Spaces:
Sleeping
Sleeping
Create backup.app.py
Browse files- backup.app.py +232 -0
backup.app.py
ADDED
|
@@ -0,0 +1,232 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import streamlit as st
|
| 2 |
+
import spacy
|
| 3 |
+
import wikipediaapi
|
| 4 |
+
import wikipedia
|
| 5 |
+
from wikipedia.exceptions import DisambiguationError
|
| 6 |
+
from transformers import TFAutoModel, AutoTokenizer
|
| 7 |
+
import numpy as np
|
| 8 |
+
import pandas as pd
|
| 9 |
+
import faiss
|
| 10 |
+
import datetime
|
| 11 |
+
import time
|
| 12 |
+
|
| 13 |
+
|
| 14 |
+
try:
|
| 15 |
+
nlp = spacy.load("en_core_web_sm")
|
| 16 |
+
except:
|
| 17 |
+
spacy.cli.download("en_core_web_sm")
|
| 18 |
+
nlp = spacy.load("en_core_web_sm")
|
| 19 |
+
|
| 20 |
+
wh_words = ['what', 'who', 'how', 'when', 'which']
|
| 21 |
+
|
| 22 |
+
def get_concepts(text):
|
| 23 |
+
text = text.lower()
|
| 24 |
+
doc = nlp(text)
|
| 25 |
+
concepts = []
|
| 26 |
+
for chunk in doc.noun_chunks:
|
| 27 |
+
if chunk.text not in wh_words:
|
| 28 |
+
concepts.append(chunk.text)
|
| 29 |
+
return concepts
|
| 30 |
+
|
| 31 |
+
def get_passages(text, k=100):
|
| 32 |
+
doc = nlp(text)
|
| 33 |
+
passages = []
|
| 34 |
+
passage_len = 0
|
| 35 |
+
passage = ""
|
| 36 |
+
sents = list(doc.sents)
|
| 37 |
+
for i in range(len(sents)):
|
| 38 |
+
sen = sents[i]
|
| 39 |
+
passage_len += len(sen)
|
| 40 |
+
if passage_len >= k:
|
| 41 |
+
passages.append(passage)
|
| 42 |
+
passage = sen.text
|
| 43 |
+
passage_len = len(sen)
|
| 44 |
+
continue
|
| 45 |
+
elif i == (len(sents) - 1):
|
| 46 |
+
passage += " " + sen.text
|
| 47 |
+
passages.append(passage)
|
| 48 |
+
passage = ""
|
| 49 |
+
passage_len = 0
|
| 50 |
+
continue
|
| 51 |
+
passage += " " + sen.text
|
| 52 |
+
return passages
|
| 53 |
+
|
| 54 |
+
def get_dicts_for_dpr(concepts, n_results=20, k=100):
|
| 55 |
+
dicts = []
|
| 56 |
+
for concept in concepts:
|
| 57 |
+
wikis = wikipedia.search(concept, results=n_results)
|
| 58 |
+
st.write(f"{concept} No of Wikis: {len(wikis)}")
|
| 59 |
+
for wiki in wikis:
|
| 60 |
+
try:
|
| 61 |
+
html_page = wikipedia.page(title=wiki, auto_suggest=False)
|
| 62 |
+
except DisambiguationError:
|
| 63 |
+
continue
|
| 64 |
+
htmlResults = html_page.content
|
| 65 |
+
passages = get_passages(htmlResults, k=k)
|
| 66 |
+
for passage in passages:
|
| 67 |
+
i_dicts = {}
|
| 68 |
+
i_dicts['text'] = passage
|
| 69 |
+
i_dicts['title'] = wiki
|
| 70 |
+
dicts.append(i_dicts)
|
| 71 |
+
return dicts
|
| 72 |
+
|
| 73 |
+
passage_encoder = TFAutoModel.from_pretrained("nlpconnect/dpr-ctx_encoder_bert_uncased_L-2_H-128_A-2")
|
| 74 |
+
query_encoder = TFAutoModel.from_pretrained("nlpconnect/dpr-question_encoder_bert_uncased_L-2_H-128_A-2")
|
| 75 |
+
p_tokenizer = AutoTokenizer.from_pretrained("nlpconnect/dpr-ctx_encoder_bert_uncased_L-2_H-128_A-2")
|
| 76 |
+
q_tokenizer = AutoTokenizer.from_pretrained("nlpconnect/dpr-question_encoder_bert_uncased_L-2_H-128_A-2")
|
| 77 |
+
|
| 78 |
+
def get_title_text_combined(passage_dicts):
|
| 79 |
+
res = []
|
| 80 |
+
for p in passage_dicts:
|
| 81 |
+
res.append(tuple((p['title'], p['text'])))
|
| 82 |
+
return res
|
| 83 |
+
|
| 84 |
+
def extracted_passage_embeddings(processed_passages, max_length=156):
|
| 85 |
+
passage_inputs = p_tokenizer.batch_encode_plus(
|
| 86 |
+
processed_passages,
|
| 87 |
+
add_special_tokens=True,
|
| 88 |
+
truncation=True,
|
| 89 |
+
padding="max_length",
|
| 90 |
+
max_length=max_length,
|
| 91 |
+
return_token_type_ids=True
|
| 92 |
+
)
|
| 93 |
+
passage_embeddings = passage_encoder.predict([np.array(passage_inputs['input_ids']), np.array(passage_inputs['attention_mask']),
|
| 94 |
+
np.array(passage_inputs['token_type_ids'])],
|
| 95 |
+
batch_size=64,
|
| 96 |
+
verbose=1)
|
| 97 |
+
return passage_embeddings
|
| 98 |
+
|
| 99 |
+
def extracted_query_embeddings(queries, max_length=64):
|
| 100 |
+
query_inputs = q_tokenizer.batch_encode_plus(
|
| 101 |
+
queries,
|
| 102 |
+
add_special_tokens=True,
|
| 103 |
+
truncation=True,
|
| 104 |
+
padding="max_length",
|
| 105 |
+
max_length=max_length,
|
| 106 |
+
return_token_type_ids=True
|
| 107 |
+
)
|
| 108 |
+
|
| 109 |
+
query_embeddings = query_encoder.predict([np.array(query_inputs['input_ids']),
|
| 110 |
+
np.array(query_inputs['attention_mask']),
|
| 111 |
+
np.array(query_inputs['token_type_ids'])],
|
| 112 |
+
batch_size=1,
|
| 113 |
+
verbose=1)
|
| 114 |
+
return query_embeddings
|
| 115 |
+
|
| 116 |
+
def get_pagetext(page):
|
| 117 |
+
s = str(page).replace("/t","")
|
| 118 |
+
return s
|
| 119 |
+
|
| 120 |
+
def get_wiki_summary(search):
|
| 121 |
+
wiki_wiki = wikipediaapi.Wikipedia('en')
|
| 122 |
+
page = wiki_wiki.page(search)
|
| 123 |
+
|
| 124 |
+
|
| 125 |
+
def get_wiki_summaryDF(search):
|
| 126 |
+
wiki_wiki = wikipediaapi.Wikipedia('en')
|
| 127 |
+
page = wiki_wiki.page(search)
|
| 128 |
+
|
| 129 |
+
isExist = page.exists()
|
| 130 |
+
if not isExist:
|
| 131 |
+
return isExist, "Not found", "Not found", "Not found", "Not found"
|
| 132 |
+
|
| 133 |
+
pageurl = page.fullurl
|
| 134 |
+
pagetitle = page.title
|
| 135 |
+
pagesummary = page.summary[0:60]
|
| 136 |
+
pagetext = get_pagetext(page.text)
|
| 137 |
+
|
| 138 |
+
backlinks = page.backlinks
|
| 139 |
+
linklist = ""
|
| 140 |
+
for link in backlinks.items():
|
| 141 |
+
pui = link[0]
|
| 142 |
+
linklist += pui + " , "
|
| 143 |
+
a=1
|
| 144 |
+
|
| 145 |
+
categories = page.categories
|
| 146 |
+
categorylist = ""
|
| 147 |
+
for category in categories.items():
|
| 148 |
+
pui = category[0]
|
| 149 |
+
categorylist += pui + " , "
|
| 150 |
+
a=1
|
| 151 |
+
|
| 152 |
+
links = page.links
|
| 153 |
+
linklist2 = ""
|
| 154 |
+
for link in links.items():
|
| 155 |
+
pui = link[0]
|
| 156 |
+
linklist2 += pui + " , "
|
| 157 |
+
a=1
|
| 158 |
+
|
| 159 |
+
sections = page.sections
|
| 160 |
+
|
| 161 |
+
ex_dic = {
|
| 162 |
+
'Entity' : ["URL","Title","Summary", "Text", "Backlinks", "Links", "Categories"],
|
| 163 |
+
'Value': [pageurl, pagetitle, pagesummary, pagetext, linklist,linklist2, categorylist ]
|
| 164 |
+
}
|
| 165 |
+
|
| 166 |
+
df = pd.DataFrame(ex_dic)
|
| 167 |
+
|
| 168 |
+
return df
|
| 169 |
+
|
| 170 |
+
|
| 171 |
+
def save_message(name, message):
|
| 172 |
+
now = datetime.datetime.now()
|
| 173 |
+
timestamp = now.strftime("%Y-%m-%d %H:%M:%S")
|
| 174 |
+
with open("chat.txt", "a") as f:
|
| 175 |
+
f.write(f"{timestamp} - {name}: {message}\n")
|
| 176 |
+
|
| 177 |
+
def press_release():
|
| 178 |
+
st.markdown("""ππ Breaking News! π’π£
|
| 179 |
+
Introducing StreamlitWikipediaChat - the ultimate way to chat with Wikipedia and the whole world at the same time! πππ
|
| 180 |
+
Are you tired of reading boring articles on Wikipedia? Do you want to have some fun while learning new things? Then StreamlitWikipediaChat is just the thing for you! ππ»
|
| 181 |
+
With StreamlitWikipediaChat, you can ask Wikipedia anything you want and get instant responses! Whether you want to know the capital of Madagascar or how to make a delicious chocolate cake, Wikipedia has got you covered. π°π
|
| 182 |
+
But that's not all! You can also chat with other people from around the world who are using StreamlitWikipediaChat at the same time. It's like a virtual classroom where you can learn from and teach others. ππ¨βπ«π©βπ«
|
| 183 |
+
And the best part? StreamlitWikipediaChat is super easy to use! All you have to do is type in your question and hit send. That's it! π€―π
|
| 184 |
+
So, what are you waiting for? Join the fun and start chatting with Wikipedia and the world today! ππ
|
| 185 |
+
StreamlitWikipediaChat - where learning meets fun! π€π""")
|
| 186 |
+
|
| 187 |
+
|
| 188 |
+
def main():
|
| 189 |
+
st.title("Streamlit Chat")
|
| 190 |
+
|
| 191 |
+
name = st.text_input("Enter your name")
|
| 192 |
+
message = st.text_input("Enter a topic to share from Wikipedia")
|
| 193 |
+
if st.button("Submit"):
|
| 194 |
+
|
| 195 |
+
# wiki
|
| 196 |
+
df = get_wiki_summaryDF(message)
|
| 197 |
+
|
| 198 |
+
save_message(name, message)
|
| 199 |
+
save_message(name, df)
|
| 200 |
+
|
| 201 |
+
st.text("Message sent!")
|
| 202 |
+
|
| 203 |
+
|
| 204 |
+
st.text("Chat history:")
|
| 205 |
+
with open("chat.txt", "a+") as f:
|
| 206 |
+
f.seek(0)
|
| 207 |
+
chat_history = f.read()
|
| 208 |
+
#st.text(chat_history)
|
| 209 |
+
st.markdown(chat_history)
|
| 210 |
+
|
| 211 |
+
countdown = st.empty()
|
| 212 |
+
t = 60
|
| 213 |
+
while t:
|
| 214 |
+
mins, secs = divmod(t, 60)
|
| 215 |
+
countdown.text(f"Time remaining: {mins:02d}:{secs:02d}")
|
| 216 |
+
time.sleep(1)
|
| 217 |
+
t -= 1
|
| 218 |
+
if t == 0:
|
| 219 |
+
countdown.text("Time's up!")
|
| 220 |
+
with open("chat.txt", "a+") as f:
|
| 221 |
+
f.seek(0)
|
| 222 |
+
chat_history = f.read()
|
| 223 |
+
#st.text(chat_history)
|
| 224 |
+
st.markdown(chat_history)
|
| 225 |
+
|
| 226 |
+
press_release()
|
| 227 |
+
|
| 228 |
+
t = 60
|
| 229 |
+
|
| 230 |
+
if __name__ == "__main__":
|
| 231 |
+
main()
|
| 232 |
+
|