Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -13,8 +13,8 @@ try:
|
|
| 13 |
except:
|
| 14 |
spacy.cli.download("en_core_web_sm")
|
| 15 |
nlp = spacy.load("en_core_web_sm")
|
| 16 |
-
|
| 17 |
wh_words = ['what', 'who', 'how', 'when', 'which']
|
|
|
|
| 18 |
def get_concepts(text):
|
| 19 |
text = text.lower()
|
| 20 |
doc = nlp(text)
|
|
@@ -38,14 +38,12 @@ def get_passages(text, k=100):
|
|
| 38 |
passage = sen.text
|
| 39 |
passage_len = len(sen)
|
| 40 |
continue
|
| 41 |
-
|
| 42 |
elif i==(len(sents)-1):
|
| 43 |
passage+=" "+sen.text
|
| 44 |
passages.append(passage)
|
| 45 |
passage = ""
|
| 46 |
passage_len = 0
|
| 47 |
continue
|
| 48 |
-
|
| 49 |
passage+=" "+sen.text
|
| 50 |
return passages
|
| 51 |
|
|
@@ -58,10 +56,8 @@ def get_dicts_for_dpr(concepts, n_results=20, k=100):
|
|
| 58 |
try:
|
| 59 |
html_page = wikipedia.page(title = wiki, auto_suggest = False)
|
| 60 |
except DisambiguationError:
|
| 61 |
-
continue
|
| 62 |
-
|
| 63 |
htmlResults=html_page.content
|
| 64 |
-
|
| 65 |
passages = get_passages(htmlResults, k=k)
|
| 66 |
for passage in passages:
|
| 67 |
i_dicts = {}
|
|
@@ -90,11 +86,13 @@ def extracted_passage_embeddings(processed_passages, max_length=156):
|
|
| 90 |
max_length=max_length,
|
| 91 |
return_token_type_ids=True
|
| 92 |
)
|
| 93 |
-
passage_embeddings = passage_encoder.predict(
|
| 94 |
-
|
| 95 |
-
|
| 96 |
-
|
| 97 |
-
|
|
|
|
|
|
|
| 98 |
return passage_embeddings
|
| 99 |
|
| 100 |
def extracted_query_embeddings(queries, max_length=64):
|
|
@@ -106,70 +104,56 @@ def extracted_query_embeddings(queries, max_length=64):
|
|
| 106 |
max_length=max_length,
|
| 107 |
return_token_type_ids=True
|
| 108 |
)
|
| 109 |
-
query_embeddings = query_encoder.predict(
|
| 110 |
-
|
| 111 |
-
|
| 112 |
-
|
| 113 |
-
|
|
|
|
|
|
|
| 114 |
return query_embeddings
|
| 115 |
|
| 116 |
-
#Wikipedia API:
|
| 117 |
|
| 118 |
def get_pagetext(page):
|
| 119 |
s=str(page).replace("/t","")
|
| 120 |
-
|
| 121 |
return s
|
| 122 |
|
| 123 |
def get_wiki_summary(search):
|
| 124 |
wiki_wiki = wikipediaapi.Wikipedia('en')
|
| 125 |
page = wiki_wiki.page(search)
|
| 126 |
-
|
| 127 |
isExist = page.exists()
|
| 128 |
if not isExist:
|
| 129 |
return isExist, "Not found", "Not found", "Not found", "Not found"
|
| 130 |
-
|
| 131 |
pageurl = page.fullurl
|
| 132 |
pagetitle = page.title
|
| 133 |
pagesummary = page.summary[0:60]
|
| 134 |
pagetext = get_pagetext(page.text)
|
| 135 |
-
|
| 136 |
backlinks = page.backlinks
|
| 137 |
linklist = ""
|
| 138 |
for link in backlinks.items():
|
| 139 |
pui = link[0]
|
| 140 |
linklist += pui + " , "
|
| 141 |
a=1
|
| 142 |
-
|
| 143 |
categories = page.categories
|
| 144 |
categorylist = ""
|
| 145 |
for category in categories.items():
|
| 146 |
pui = category[0]
|
| 147 |
categorylist += pui + " , "
|
| 148 |
a=1
|
| 149 |
-
|
| 150 |
links = page.links
|
| 151 |
linklist2 = ""
|
| 152 |
for link in links.items():
|
| 153 |
pui = link[0]
|
| 154 |
linklist2 += pui + " , "
|
| 155 |
a=1
|
| 156 |
-
|
| 157 |
sections = page.sections
|
| 158 |
-
|
| 159 |
-
|
| 160 |
ex_dic = {
|
| 161 |
'Entity' : ["URL","Title","Summary", "Text", "Backlinks", "Links", "Categories"],
|
| 162 |
'Value': [pageurl, pagetitle, pagesummary, pagetext, linklist,linklist2, categorylist ]
|
| 163 |
}
|
| 164 |
-
|
| 165 |
-
#columns = [pageurl,pagetitle]
|
| 166 |
-
#index = [pagesummary,pagetext]
|
| 167 |
-
#df = pd.DataFrame(page, columns=columns, index=index)
|
| 168 |
-
#df = pd.DataFrame(ex_dic, columns=columns, index=index)
|
| 169 |
df = pd.DataFrame(ex_dic)
|
| 170 |
-
|
| 171 |
return df
|
| 172 |
-
|
| 173 |
|
| 174 |
def search(question):
|
| 175 |
concepts = get_concepts(question)
|
|
@@ -184,11 +168,9 @@ def search(question):
|
|
| 184 |
query_embeddings = extracted_query_embeddings([question])
|
| 185 |
faiss_index = faiss.IndexFlatL2(128)
|
| 186 |
faiss_index.add(passage_embeddings.pooler_output)
|
| 187 |
-
# prob, index = faiss_index.search(query_embeddings.pooler_output, k=1000)
|
| 188 |
prob, index = faiss_index.search(query_embeddings.pooler_output, k=lendicts)
|
| 189 |
return pd.DataFrame([dicts[i] for i in index[0]])
|
| 190 |
|
| 191 |
-
|
| 192 |
# AI UI SOTA - radio blocks with UI formatting, and event driven UI
|
| 193 |
with gr.Blocks() as demo: # Block documentation on event listeners, start here: https://gradio.app/blocks_and_event_listeners/
|
| 194 |
gr.Markdown("<h1><center>🍰 Ultimate Wikipedia AI 🎨</center></h1>")
|
|
@@ -205,5 +187,4 @@ with gr.Blocks() as demo: # Block documentation on event listeners, start he
|
|
| 205 |
inp.submit(fn=get_wiki_summary, inputs=inp, outputs=out_DF)
|
| 206 |
b3.click(fn=search, inputs=inp, outputs=out)
|
| 207 |
b4.click(fn=get_wiki_summary, inputs=inp, outputs=out_DF )
|
| 208 |
-
demo.launch(debug=True, show_error=True)
|
| 209 |
-
|
|
|
|
| 13 |
except:
|
| 14 |
spacy.cli.download("en_core_web_sm")
|
| 15 |
nlp = spacy.load("en_core_web_sm")
|
|
|
|
| 16 |
wh_words = ['what', 'who', 'how', 'when', 'which']
|
| 17 |
+
|
| 18 |
def get_concepts(text):
|
| 19 |
text = text.lower()
|
| 20 |
doc = nlp(text)
|
|
|
|
| 38 |
passage = sen.text
|
| 39 |
passage_len = len(sen)
|
| 40 |
continue
|
|
|
|
| 41 |
elif i==(len(sents)-1):
|
| 42 |
passage+=" "+sen.text
|
| 43 |
passages.append(passage)
|
| 44 |
passage = ""
|
| 45 |
passage_len = 0
|
| 46 |
continue
|
|
|
|
| 47 |
passage+=" "+sen.text
|
| 48 |
return passages
|
| 49 |
|
|
|
|
| 56 |
try:
|
| 57 |
html_page = wikipedia.page(title = wiki, auto_suggest = False)
|
| 58 |
except DisambiguationError:
|
| 59 |
+
continue
|
|
|
|
| 60 |
htmlResults=html_page.content
|
|
|
|
| 61 |
passages = get_passages(htmlResults, k=k)
|
| 62 |
for passage in passages:
|
| 63 |
i_dicts = {}
|
|
|
|
| 86 |
max_length=max_length,
|
| 87 |
return_token_type_ids=True
|
| 88 |
)
|
| 89 |
+
passage_embeddings = passage_encoder.predict(
|
| 90 |
+
[np.array(passage_inputs['input_ids']),
|
| 91 |
+
np.array(passage_inputs['attention_mask']),
|
| 92 |
+
np.array(passage_inputs['token_type_ids'])],
|
| 93 |
+
batch_size=64,
|
| 94 |
+
verbose=1
|
| 95 |
+
)
|
| 96 |
return passage_embeddings
|
| 97 |
|
| 98 |
def extracted_query_embeddings(queries, max_length=64):
|
|
|
|
| 104 |
max_length=max_length,
|
| 105 |
return_token_type_ids=True
|
| 106 |
)
|
| 107 |
+
query_embeddings = query_encoder.predict(
|
| 108 |
+
[np.array(query_inputs['input_ids']),
|
| 109 |
+
np.array(query_inputs['attention_mask']),
|
| 110 |
+
np.array(query_inputs['token_type_ids'])],
|
| 111 |
+
batch_size=1,
|
| 112 |
+
verbose=1
|
| 113 |
+
)
|
| 114 |
return query_embeddings
|
| 115 |
|
| 116 |
+
# Wikipedia API:
|
| 117 |
|
| 118 |
def get_pagetext(page):
|
| 119 |
s=str(page).replace("/t","")
|
|
|
|
| 120 |
return s
|
| 121 |
|
| 122 |
def get_wiki_summary(search):
|
| 123 |
wiki_wiki = wikipediaapi.Wikipedia('en')
|
| 124 |
page = wiki_wiki.page(search)
|
|
|
|
| 125 |
isExist = page.exists()
|
| 126 |
if not isExist:
|
| 127 |
return isExist, "Not found", "Not found", "Not found", "Not found"
|
|
|
|
| 128 |
pageurl = page.fullurl
|
| 129 |
pagetitle = page.title
|
| 130 |
pagesummary = page.summary[0:60]
|
| 131 |
pagetext = get_pagetext(page.text)
|
|
|
|
| 132 |
backlinks = page.backlinks
|
| 133 |
linklist = ""
|
| 134 |
for link in backlinks.items():
|
| 135 |
pui = link[0]
|
| 136 |
linklist += pui + " , "
|
| 137 |
a=1
|
|
|
|
| 138 |
categories = page.categories
|
| 139 |
categorylist = ""
|
| 140 |
for category in categories.items():
|
| 141 |
pui = category[0]
|
| 142 |
categorylist += pui + " , "
|
| 143 |
a=1
|
|
|
|
| 144 |
links = page.links
|
| 145 |
linklist2 = ""
|
| 146 |
for link in links.items():
|
| 147 |
pui = link[0]
|
| 148 |
linklist2 += pui + " , "
|
| 149 |
a=1
|
|
|
|
| 150 |
sections = page.sections
|
|
|
|
|
|
|
| 151 |
ex_dic = {
|
| 152 |
'Entity' : ["URL","Title","Summary", "Text", "Backlinks", "Links", "Categories"],
|
| 153 |
'Value': [pageurl, pagetitle, pagesummary, pagetext, linklist,linklist2, categorylist ]
|
| 154 |
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 155 |
df = pd.DataFrame(ex_dic)
|
|
|
|
| 156 |
return df
|
|
|
|
| 157 |
|
| 158 |
def search(question):
|
| 159 |
concepts = get_concepts(question)
|
|
|
|
| 168 |
query_embeddings = extracted_query_embeddings([question])
|
| 169 |
faiss_index = faiss.IndexFlatL2(128)
|
| 170 |
faiss_index.add(passage_embeddings.pooler_output)
|
|
|
|
| 171 |
prob, index = faiss_index.search(query_embeddings.pooler_output, k=lendicts)
|
| 172 |
return pd.DataFrame([dicts[i] for i in index[0]])
|
| 173 |
|
|
|
|
| 174 |
# AI UI SOTA - radio blocks with UI formatting, and event driven UI
|
| 175 |
with gr.Blocks() as demo: # Block documentation on event listeners, start here: https://gradio.app/blocks_and_event_listeners/
|
| 176 |
gr.Markdown("<h1><center>🍰 Ultimate Wikipedia AI 🎨</center></h1>")
|
|
|
|
| 187 |
inp.submit(fn=get_wiki_summary, inputs=inp, outputs=out_DF)
|
| 188 |
b3.click(fn=search, inputs=inp, outputs=out)
|
| 189 |
b4.click(fn=get_wiki_summary, inputs=inp, outputs=out_DF )
|
| 190 |
+
demo.launch(debug=True, show_error=True)
|
|
|