Spaces:
Build error
Build error
Upload 2 files
Browse files
app.py
CHANGED
|
@@ -12,15 +12,18 @@ from utils import (
|
|
| 12 |
create_sparse_embeddings,
|
| 13 |
extract_entities,
|
| 14 |
format_query,
|
|
|
|
|
|
|
|
|
|
| 15 |
generate_flant5_prompt_instruct_chunk_context,
|
| 16 |
-
generate_flant5_prompt_instruct_complete_context,
|
| 17 |
generate_flant5_prompt_instruct_chunk_context_single,
|
| 18 |
-
|
| 19 |
generate_flant5_prompt_summ_chunk_context,
|
| 20 |
-
|
| 21 |
-
generate_gpt_prompt,
|
| 22 |
generate_gpt_j_two_shot_prompt_1,
|
| 23 |
generate_gpt_j_two_shot_prompt_2,
|
|
|
|
|
|
|
| 24 |
get_context_list_prompt,
|
| 25 |
get_data,
|
| 26 |
get_flan_t5_model,
|
|
@@ -49,7 +52,13 @@ st.write(
|
|
| 49 |
col1, col2 = st.columns([3, 3], gap="medium")
|
| 50 |
|
| 51 |
|
| 52 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 53 |
|
| 54 |
with col1:
|
| 55 |
st.subheader("Question")
|
|
@@ -58,7 +67,12 @@ with col1:
|
|
| 58 |
value="What was discussed regarding Wearables revenue performance?",
|
| 59 |
)
|
| 60 |
|
| 61 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 62 |
ticker_index, quarter_index, year_index = clean_entities(
|
| 63 |
company_ent, quarter_ent, year_ent
|
| 64 |
)
|
|
@@ -251,7 +265,9 @@ if decoder_model == "GPT3 - (text-davinci-003)":
|
|
| 251 |
|
| 252 |
|
| 253 |
elif decoder_model == "T5":
|
| 254 |
-
prompt = generate_flant5_prompt_instruct_complete_context(
|
|
|
|
|
|
|
| 255 |
t5_pipeline = get_t5_model()
|
| 256 |
output_text = []
|
| 257 |
with col2:
|
|
@@ -275,7 +291,8 @@ elif decoder_model == "FLAN-T5":
|
|
| 275 |
output_text = []
|
| 276 |
with col2:
|
| 277 |
prompt_type = st.selectbox(
|
| 278 |
-
"Select prompt type",
|
|
|
|
| 279 |
)
|
| 280 |
if prompt_type == "Complete Text QA":
|
| 281 |
prompt = generate_flant5_prompt_instruct_complete_context(
|
|
@@ -300,23 +317,37 @@ elif decoder_model == "FLAN-T5":
|
|
| 300 |
submitted = st.form_submit_button("Submit")
|
| 301 |
if submitted:
|
| 302 |
if prompt_type == "Complete Text QA":
|
| 303 |
-
output_text_string = generate_text_flan_t5(
|
|
|
|
|
|
|
| 304 |
st.subheader("Answer:")
|
| 305 |
st.write(output_text_string)
|
| 306 |
elif prompt_type == "Chunkwise QA":
|
| 307 |
for context_text in context_list:
|
| 308 |
-
model_input = generate_flant5_prompt_instruct_chunk_context_single(
|
|
|
|
|
|
|
| 309 |
output_text.append(
|
| 310 |
-
generate_text_flan_t5(
|
|
|
|
|
|
|
|
|
|
| 311 |
st.subheader("Answer:")
|
| 312 |
for text in output_text:
|
| 313 |
if "(iii)" not in text:
|
| 314 |
st.markdown(f"- {text}")
|
| 315 |
elif prompt_type == "Chunkwise Summarize":
|
| 316 |
for context_text in context_list:
|
| 317 |
-
model_input =
|
|
|
|
|
|
|
|
|
|
|
|
|
| 318 |
output_text.append(
|
| 319 |
-
generate_text_flan_t5(
|
|
|
|
|
|
|
|
|
|
| 320 |
st.subheader("Answer:")
|
| 321 |
for text in output_text:
|
| 322 |
if "(iii)" not in text:
|
|
|
|
| 12 |
create_sparse_embeddings,
|
| 13 |
extract_entities,
|
| 14 |
format_query,
|
| 15 |
+
get_flan_alpaca_xl_model,
|
| 16 |
+
generate_entities_flan_alpaca,
|
| 17 |
+
format_entities_flan_alpaca,
|
| 18 |
generate_flant5_prompt_instruct_chunk_context,
|
|
|
|
| 19 |
generate_flant5_prompt_instruct_chunk_context_single,
|
| 20 |
+
generate_flant5_prompt_instruct_complete_context,
|
| 21 |
generate_flant5_prompt_summ_chunk_context,
|
| 22 |
+
generate_flant5_prompt_summ_chunk_context_single,
|
|
|
|
| 23 |
generate_gpt_j_two_shot_prompt_1,
|
| 24 |
generate_gpt_j_two_shot_prompt_2,
|
| 25 |
+
generate_gpt_prompt,
|
| 26 |
+
generate_text_flan_t5,
|
| 27 |
get_context_list_prompt,
|
| 28 |
get_data,
|
| 29 |
get_flan_t5_model,
|
|
|
|
| 52 |
col1, col2 = st.columns([3, 3], gap="medium")
|
| 53 |
|
| 54 |
|
| 55 |
+
with st.sidebar:
|
| 56 |
+
ner_choice = st.selectbox("Select NER Model", ["Alpaca", "Spacy"])
|
| 57 |
+
|
| 58 |
+
if ner_choice == "Alpaca":
|
| 59 |
+
ner_model = get_flan_alpaca_xl_model()
|
| 60 |
+
else:
|
| 61 |
+
ner_model = get_spacy_model()
|
| 62 |
|
| 63 |
with col1:
|
| 64 |
st.subheader("Question")
|
|
|
|
| 67 |
value="What was discussed regarding Wearables revenue performance?",
|
| 68 |
)
|
| 69 |
|
| 70 |
+
if ner_choice == "Alpaca":
|
| 71 |
+
entity_text = generate_entities_flan_alpaca(ner_model)
|
| 72 |
+
company_ent, quarter_ent, year_ent = format_entities_flan_alpaca(entity_text)
|
| 73 |
+
else:
|
| 74 |
+
company_ent, quarter_ent, year_ent = extract_entities(query_text, ner_model)
|
| 75 |
+
|
| 76 |
ticker_index, quarter_index, year_index = clean_entities(
|
| 77 |
company_ent, quarter_ent, year_ent
|
| 78 |
)
|
|
|
|
| 265 |
|
| 266 |
|
| 267 |
elif decoder_model == "T5":
|
| 268 |
+
prompt = generate_flant5_prompt_instruct_complete_context(
|
| 269 |
+
query_text, context_list
|
| 270 |
+
)
|
| 271 |
t5_pipeline = get_t5_model()
|
| 272 |
output_text = []
|
| 273 |
with col2:
|
|
|
|
| 291 |
output_text = []
|
| 292 |
with col2:
|
| 293 |
prompt_type = st.selectbox(
|
| 294 |
+
"Select prompt type",
|
| 295 |
+
["Complete Text QA", "Chunkwise QA", "Chunkwise Summarize"],
|
| 296 |
)
|
| 297 |
if prompt_type == "Complete Text QA":
|
| 298 |
prompt = generate_flant5_prompt_instruct_complete_context(
|
|
|
|
| 317 |
submitted = st.form_submit_button("Submit")
|
| 318 |
if submitted:
|
| 319 |
if prompt_type == "Complete Text QA":
|
| 320 |
+
output_text_string = generate_text_flan_t5(
|
| 321 |
+
flan_t5_model, flan_t5_tokenizer, prompt
|
| 322 |
+
)
|
| 323 |
st.subheader("Answer:")
|
| 324 |
st.write(output_text_string)
|
| 325 |
elif prompt_type == "Chunkwise QA":
|
| 326 |
for context_text in context_list:
|
| 327 |
+
model_input = generate_flant5_prompt_instruct_chunk_context_single(
|
| 328 |
+
query_text, context_text
|
| 329 |
+
)
|
| 330 |
output_text.append(
|
| 331 |
+
generate_text_flan_t5(
|
| 332 |
+
flan_t5_model, flan_t5_tokenizer, model_input
|
| 333 |
+
)
|
| 334 |
+
)
|
| 335 |
st.subheader("Answer:")
|
| 336 |
for text in output_text:
|
| 337 |
if "(iii)" not in text:
|
| 338 |
st.markdown(f"- {text}")
|
| 339 |
elif prompt_type == "Chunkwise Summarize":
|
| 340 |
for context_text in context_list:
|
| 341 |
+
model_input = (
|
| 342 |
+
generate_flant5_prompt_summ_chunk_context_single(
|
| 343 |
+
query_text, context_text
|
| 344 |
+
)
|
| 345 |
+
)
|
| 346 |
output_text.append(
|
| 347 |
+
generate_text_flan_t5(
|
| 348 |
+
flan_t5_model, flan_t5_tokenizer, model_input
|
| 349 |
+
)
|
| 350 |
+
)
|
| 351 |
st.subheader("Answer:")
|
| 352 |
for text in output_text:
|
| 353 |
if "(iii)" not in text:
|
utils.py
CHANGED
|
@@ -2,7 +2,6 @@ import re
|
|
| 2 |
|
| 3 |
import openai
|
| 4 |
import pandas as pd
|
| 5 |
-
import pinecone
|
| 6 |
import spacy
|
| 7 |
import streamlit_scrollable_textbox as stx
|
| 8 |
import torch
|
|
@@ -12,11 +11,12 @@ from transformers import (
|
|
| 12 |
AutoModelForMaskedLM,
|
| 13 |
AutoModelForSeq2SeqLM,
|
| 14 |
AutoTokenizer,
|
|
|
|
|
|
|
| 15 |
pipeline,
|
| 16 |
)
|
| 17 |
-
from transformers import T5Tokenizer, T5ForConditionalGeneration
|
| 18 |
-
|
| 19 |
|
|
|
|
| 20 |
import streamlit as st
|
| 21 |
|
| 22 |
|
|
@@ -34,6 +34,11 @@ def get_spacy_model():
|
|
| 34 |
return spacy.load("en_core_web_sm")
|
| 35 |
|
| 36 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 37 |
# Initialize models from HuggingFace
|
| 38 |
|
| 39 |
|
|
@@ -469,6 +474,42 @@ Answer:?"""
|
|
| 469 |
|
| 470 |
# Entity Extraction
|
| 471 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 472 |
|
| 473 |
def extract_quarter_year(string):
|
| 474 |
# Extract year from string
|
|
|
|
| 2 |
|
| 3 |
import openai
|
| 4 |
import pandas as pd
|
|
|
|
| 5 |
import spacy
|
| 6 |
import streamlit_scrollable_textbox as stx
|
| 7 |
import torch
|
|
|
|
| 11 |
AutoModelForMaskedLM,
|
| 12 |
AutoModelForSeq2SeqLM,
|
| 13 |
AutoTokenizer,
|
| 14 |
+
T5ForConditionalGeneration,
|
| 15 |
+
T5Tokenizer,
|
| 16 |
pipeline,
|
| 17 |
)
|
|
|
|
|
|
|
| 18 |
|
| 19 |
+
import pinecone
|
| 20 |
import streamlit as st
|
| 21 |
|
| 22 |
|
|
|
|
| 34 |
return spacy.load("en_core_web_sm")
|
| 35 |
|
| 36 |
|
| 37 |
+
@st.experimental_singleton
|
| 38 |
+
def get_flan_alpaca_xl_model():
|
| 39 |
+
return pipeline(model="declare-lab/flan-alpaca-xl")
|
| 40 |
+
|
| 41 |
+
|
| 42 |
# Initialize models from HuggingFace
|
| 43 |
|
| 44 |
|
|
|
|
| 474 |
|
| 475 |
# Entity Extraction
|
| 476 |
|
| 477 |
+
def generate_entities_flan_alpaca(model):
|
| 478 |
+
output = model(prompt, max_length=512, temperature=0.1)
|
| 479 |
+
generated_text = output[0]["generated_text"]
|
| 480 |
+
return generated_text
|
| 481 |
+
|
| 482 |
+
|
| 483 |
+
def format_entities_flan_alpaca(model_output):
|
| 484 |
+
"""
|
| 485 |
+
Extracts the text for each entity from the output generated by the
|
| 486 |
+
Flan-Alpaca model.
|
| 487 |
+
"""
|
| 488 |
+
try:
|
| 489 |
+
company_string, quarter_string, year_string = values.split(", ")
|
| 490 |
+
except:
|
| 491 |
+
company = None
|
| 492 |
+
quarter = None
|
| 493 |
+
year = None
|
| 494 |
+
try:
|
| 495 |
+
company = company_string.split(" - ")[1].lower()
|
| 496 |
+
company = None if company.lower() == 'none' else company
|
| 497 |
+
except:
|
| 498 |
+
company = None
|
| 499 |
+
try:
|
| 500 |
+
quarter = quarter_string.split(" - ")[1]
|
| 501 |
+
quarter = None if quarter.lower() == 'none' else quarter
|
| 502 |
+
|
| 503 |
+
except:
|
| 504 |
+
quarter = None
|
| 505 |
+
try:
|
| 506 |
+
year = year_string.split(" - ")[1]
|
| 507 |
+
year = None if year.lower() == 'none' else year
|
| 508 |
+
|
| 509 |
+
except:
|
| 510 |
+
year = None
|
| 511 |
+
return company, quarter, year
|
| 512 |
+
|
| 513 |
|
| 514 |
def extract_quarter_year(string):
|
| 515 |
# Extract year from string
|