Spaces:
Build error
Build error
Upload 2 files
Browse files- app.py +196 -0
- requirements.txt +8 -0
app.py
ADDED
|
@@ -0,0 +1,196 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import pandas as pd
|
| 2 |
+
from tqdm import tqdm
|
| 3 |
+
import pinecone
|
| 4 |
+
import torch
|
| 5 |
+
from sentence_transformers import SentenceTransformer
|
| 6 |
+
from transformers import (
|
| 7 |
+
pipeline,
|
| 8 |
+
AutoTokenizer,
|
| 9 |
+
AutoModelForCausalLM,
|
| 10 |
+
AutoModelForSeq2SeqLM,
|
| 11 |
+
)
|
| 12 |
+
import streamlit as st
|
| 13 |
+
import openai
|
| 14 |
+
|
| 15 |
+
|
| 16 |
+
# Initialize models from HuggingFace
|
| 17 |
+
|
| 18 |
+
|
| 19 |
+
@st.experimental_singleton
|
| 20 |
+
def get_t5_model():
|
| 21 |
+
return pipeline("summarization", model="t5-small", tokenizer="t5-small")
|
| 22 |
+
|
| 23 |
+
|
| 24 |
+
@st.experimental_singleton
|
| 25 |
+
def get_flan_t5_model():
|
| 26 |
+
return pipeline(
|
| 27 |
+
"summarization", model="google/flan-t5-small", tokenizer="google/flan-t5-small"
|
| 28 |
+
)
|
| 29 |
+
|
| 30 |
+
|
| 31 |
+
@st.experimental_singleton
|
| 32 |
+
def get_mpnet_embedding_model():
|
| 33 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 34 |
+
model = SentenceTransformer(
|
| 35 |
+
"sentence-transformers/all-mpnet-base-v2", device=device
|
| 36 |
+
)
|
| 37 |
+
model.max_seq_length = 512
|
| 38 |
+
return model
|
| 39 |
+
|
| 40 |
+
|
| 41 |
+
@st.experimental_singleton
|
| 42 |
+
def get_sgpt_embedding_model():
|
| 43 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 44 |
+
model = SentenceTransformer(
|
| 45 |
+
"Muennighoff/SGPT-125M-weightedmean-nli-bitfit", device=device
|
| 46 |
+
)
|
| 47 |
+
model.max_seq_length = 512
|
| 48 |
+
return model
|
| 49 |
+
|
| 50 |
+
|
| 51 |
+
@st.experimental_memo
|
| 52 |
+
def save_key(api_key):
|
| 53 |
+
return api_key
|
| 54 |
+
|
| 55 |
+
|
| 56 |
+
def query_pinecone(query, top_k, model, index):
|
| 57 |
+
# generate embeddings for the query
|
| 58 |
+
xq = model.encode([query]).tolist()
|
| 59 |
+
# search pinecone index for context passage with the answer
|
| 60 |
+
xc = index.query(xq, top_k=top_k, include_metadata=True)
|
| 61 |
+
return xc
|
| 62 |
+
|
| 63 |
+
|
| 64 |
+
def format_query(query_results):
|
| 65 |
+
# extract passage_text from Pinecone search result
|
| 66 |
+
context = [result["metadata"]["Text"] for result in query_results["matches"]]
|
| 67 |
+
return context
|
| 68 |
+
|
| 69 |
+
|
| 70 |
+
def gpt3_summary(text):
|
| 71 |
+
response = openai.Completion.create(
|
| 72 |
+
model="text-davinci-003",
|
| 73 |
+
prompt=text + "\n\nTl;dr",
|
| 74 |
+
temperature=0.1,
|
| 75 |
+
max_tokens=512,
|
| 76 |
+
top_p=1.0,
|
| 77 |
+
frequency_penalty=0.0,
|
| 78 |
+
presence_penalty=1,
|
| 79 |
+
)
|
| 80 |
+
return response.choices[0].text
|
| 81 |
+
|
| 82 |
+
|
| 83 |
+
def gpt3_qa(query, answer):
|
| 84 |
+
response = openai.Completion.create(
|
| 85 |
+
model="text-davinci-003",
|
| 86 |
+
prompt="Q: " + query + "\nA: " + answer,
|
| 87 |
+
temperature=0,
|
| 88 |
+
max_tokens=512,
|
| 89 |
+
top_p=1,
|
| 90 |
+
frequency_penalty=0.0,
|
| 91 |
+
presence_penalty=0.0,
|
| 92 |
+
stop=["\n"],
|
| 93 |
+
)
|
| 94 |
+
return response.choices[0].text
|
| 95 |
+
|
| 96 |
+
|
| 97 |
+
st.title("Abstractive Question Answering - APPL")
|
| 98 |
+
|
| 99 |
+
query_text = st.text_input("Input Query", value="Who is the CEO of Apple?")
|
| 100 |
+
|
| 101 |
+
num_results = int(st.number_input("Number of Results to query", 1, 5, value=2))
|
| 102 |
+
|
| 103 |
+
|
| 104 |
+
# Choose encoder model
|
| 105 |
+
|
| 106 |
+
encoder_models_choice = ["MPNET", "SGPT"]
|
| 107 |
+
|
| 108 |
+
encoder_model = st.selectbox("Select Encoder Model", encoder_models_choice)
|
| 109 |
+
|
| 110 |
+
|
| 111 |
+
# Choose decoder model
|
| 112 |
+
|
| 113 |
+
decoder_models_choice = ["GPT3 (QA_davinci)", "GPT3 (text_davinci)", "T5", "FLAN-T5"]
|
| 114 |
+
|
| 115 |
+
decoder_model = st.selectbox("Select Decoder Model", decoder_models_choice)
|
| 116 |
+
|
| 117 |
+
|
| 118 |
+
if encoder_model == "MPNET":
|
| 119 |
+
# Connect to pinecone environment
|
| 120 |
+
pinecone.init(
|
| 121 |
+
api_key="ea9fd320-6f8a-4edd-bf41-9e972b95cbf9", environment="us-east1-gcp"
|
| 122 |
+
)
|
| 123 |
+
pinecone_index_name = "week2-all-mpnet-base"
|
| 124 |
+
pinecone_index = pinecone.Index(pinecone_index_name)
|
| 125 |
+
retriever_model = get_mpnet_embedding_model()
|
| 126 |
+
|
| 127 |
+
elif encoder_model == "SGPT":
|
| 128 |
+
# Connect to pinecone environment
|
| 129 |
+
pinecone.init(
|
| 130 |
+
api_key="0d8215d7-4ad5-4c76-8c45-4a40c0f6a1b7", environment="us-east1-gcp"
|
| 131 |
+
)
|
| 132 |
+
pinecone_index_name = "week2-sgpt-125m"
|
| 133 |
+
pinecone_index = pinecone.Index(pinecone_index_name)
|
| 134 |
+
retriever_model = get_sgpt_embedding_model()
|
| 135 |
+
|
| 136 |
+
|
| 137 |
+
query_results = query_pinecone(query_text, num_results, retriever_model, pinecone_index)
|
| 138 |
+
|
| 139 |
+
context_list = format_query(query_results)
|
| 140 |
+
|
| 141 |
+
|
| 142 |
+
st.subheader("Answer:")
|
| 143 |
+
|
| 144 |
+
|
| 145 |
+
if decoder_model == "GPT3 (text_davinci)":
|
| 146 |
+
openai_key = st.text_input(
|
| 147 |
+
"Enter OpenAI key",
|
| 148 |
+
value="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",
|
| 149 |
+
type="password",
|
| 150 |
+
)
|
| 151 |
+
api_key = save_key(openai_key)
|
| 152 |
+
openai.api_key = api_key
|
| 153 |
+
output_text = []
|
| 154 |
+
for context_text in context_list:
|
| 155 |
+
output_text.append(gpt3_summary(context_text))
|
| 156 |
+
generated_text = " ".join(output_text)
|
| 157 |
+
st.write(gpt3_summary(generated_text))
|
| 158 |
+
|
| 159 |
+
elif decoder_model == "GPT3 - QA":
|
| 160 |
+
openai_key = st.text_input(
|
| 161 |
+
"Enter OpenAI key",
|
| 162 |
+
value="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",
|
| 163 |
+
type="password",
|
| 164 |
+
)
|
| 165 |
+
api_key = save_key(openai_key)
|
| 166 |
+
openai.api_key = api_key
|
| 167 |
+
output_text = []
|
| 168 |
+
for context_text in context_list:
|
| 169 |
+
output_text.append(gpt3_qa(query_text, context_text))
|
| 170 |
+
generated_text = " ".join(output_text)
|
| 171 |
+
st.write(gpt3_qa(query_text, generated_text))
|
| 172 |
+
|
| 173 |
+
elif decoder_model == "T5":
|
| 174 |
+
t5_pipeline = get_t5_model()
|
| 175 |
+
output_text = []
|
| 176 |
+
for context_text in context_list:
|
| 177 |
+
output_text.append(t5_pipeline(context_text)[0]["summary_text"])
|
| 178 |
+
generated_text = " ".join(output_text)
|
| 179 |
+
st.write(t5_pipeline(generated_text)[0]["summary_text"])
|
| 180 |
+
|
| 181 |
+
elif decoder_model == "FLAN-T5":
|
| 182 |
+
flan_t5_pipeline = get_flan_t5_model()
|
| 183 |
+
output_text = []
|
| 184 |
+
for context_text in context_list:
|
| 185 |
+
output_text.append(flan_t5_pipeline(context_text)[0]["summary_text"])
|
| 186 |
+
generated_text = " ".join(output_text)
|
| 187 |
+
st.write(flan_t5_pipeline(generated_text)[0]["summary_text"])
|
| 188 |
+
|
| 189 |
+
show_retrieved_text = st.checkbox("Show Retrieved Text", value=False)
|
| 190 |
+
|
| 191 |
+
if show_retrieved_text:
|
| 192 |
+
|
| 193 |
+
st.subheader("Retrieved Text:")
|
| 194 |
+
|
| 195 |
+
for context_text in context_list:
|
| 196 |
+
st.markdown(f"- {context_text}")
|
requirements.txt
ADDED
|
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
pandas
|
| 2 |
+
tqdm
|
| 3 |
+
pinecone-client
|
| 4 |
+
torch
|
| 5 |
+
sentence_transformers
|
| 6 |
+
transformers
|
| 7 |
+
streamlit
|
| 8 |
+
openai
|