File size: 6,258 Bytes
2dcfe74
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
```python
#!/usr/bin/env python3
"""
Healthcare AI API for Web Integration
FastAPI backend for HIPAA-compliant AI services
"""

from fastapi import FastAPI, HTTPException, Depends, Security
from fastapi.security import HTTPBearer, HTTPAuthorizationCredentials
from pydantic import BaseModel
import uvicorn
from healthcare_ai_finetune import HealthcareAIApp, HIPAACompliantDataHandler
import json
from typing import Optional, List
import logging

# Configure logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)

# Initialize AI system
healthcare_ai = HealthcareAIApp()
healthcare_ai.initialize_models()

app = FastAPI(
    title="Healthcare AI API",
    description="HIPAA-compliant AI services for patient education and predictive analytics",
    version="1.0.0"
)

security = HTTPBearer()

class PatientData(BaseModel):
    age: int
    bmi: float
    blood_pressure_systolic: int
    blood_pressure_diastolic: int
    gender: str
    smoking_status: str
    diabetes_status: str
    condition: str
    symptoms: str

class PredictionRequest(BaseModel):
    patient_data: PatientData
    model_type: str = "both"  # "education", "prediction", or "both"

class HealthPrediction(BaseModel):
    risk_level: int
    confidence: float
    recommendations: List[str]

class EducationMaterial(BaseModel):
    content: str
    condition: str
    generated_at: str

class APIResponse(BaseModel):
    success: bool
    message: str
    data: Optional[dict] = None

def verify_token(credentials: HTTPAuthorizationCredentials = Depends(security)):
    """Simple token verification - enhance for production"""
    valid_tokens = ["healthcare_provider_token_2024"]
    if credentials.credentials not in valid_tokens:
        raise HTTPException(status_code=401, detail="Invalid token")
    return credentials.credentials

@app.get("/")
async def root():
    return {"message": "Healthcare AI API - HIPAA Compliant"}

@app.post("/api/generate-education", response_model=APIResponse)
async def generate_education_material(
    request: PredictionRequest,
    token: str = Depends(verify_token)
):
    """Generate patient education materials"""
    try:
        # Convert patient data to DataFrame format
        patient_df = pd.DataFrame([{
            'age': request.patient_data.age,
            'bmi': request.patient_data.bmi,
            'blood_pressure_systolic': request.patient_data.blood_pressure_systolic,
            'blood_pressure_diastolic': request.patient_data.blood_pressure_diastolic,
            'gender': request.patient_data.gender,
            'smoking_status': request.patient_data.smoking_status,
            'diabetes_status': request.patient_data.diabetes_status
        }])
        
        result = healthcare_ai.process_patient_case(
            patient_df,
            request.patient_data.condition,
            request.patient_data.symptoms
        )
        
        return APIResponse(
            success=True,
            message="Education material generated successfully",
            data={
                "education_material": result["education_material"],
                "condition": request.patient_data.condition
        )
        
    except Exception as e:
        logger.error(f"Error generating education material: {e}")
        raise HTTPException(status_code=500, detail="Internal server error")
    
@app.post("/api/predict-health", response_model=APIResponse)
async def predict_health_outcomes(
    request: PredictionRequest,
    token: str = Depends(verify_token)
):
    """Predict health outcomes and risk levels"""
    try:
        patient_df = pd.DataFrame([{
            'age': request.patient_data.age,
            'bmi': request.patient_data.bmi,
            'blood_pressure_systolic': request.patient_data.blood_pressure_systolic,
            'blood_pressure_diastolic': request.patient_data.blood_pressure_diastolic,
            'gender': request.patient_data.gender,
            'smoking_status': request.patient_data.smoking_status,
            'diabetes_status': request.patient_data.diabetes_status
        }])
        
        predictions, probabilities = healthcare_ai.health_predictor.predict_health_outcomes(patient_df)
        
        return APIResponse(
            success=True,
            message="Health prediction completed",
            data={
                "risk_prediction": int(predictions[0]),
                "confidence_score': float(np.max(probabilities[0])),
                'recommendations': result["treatment_recommendations"]
        )
        
    except Exception as e:
        logger.error(f"Error predicting health outcomes: {e}")
        raise HTTPException(status_code=500, detail="Internal server error")

@app.post("/api/comprehensive-analysis", response_model=APIResponse)
async def comprehensive_health_analysis(
    request: PredictionRequest,
    token: str = Depends(verify_token)
):
    """Complete health analysis with education and predictions"""
    try:
        patient_df = pd.DataFrame([{
            'age': request.patient_data.age,
            'bmi': request.patient_data.bmi,
            'blood_pressure_systolic': request.patient_data.blood_pressure_systolic,
            'blood_pressure_diastolic': request.patient_data.blood_pressure_diastolic,
            'gender': request.patient_data.gender,
            'smoking_status': request.patient_data.smoking_status,
            'diabetes_status': request.patient_data.diabetes_status
        }])
        
        result = healthcare_ai.process_patient_case(
            patient_df,
            request.patient_data.condition,
            request.patient_data.symptoms
        )
        
        return APIResponse(
            success=True,
            message="Comprehensive health analysis completed",
            data=result
        )
        
    except Exception as e:
        logger.error(f"Error in comprehensive analysis: {e}")
        raise HTTPException(status_code=500, detail="Internal server error")

@app.get("/api/health")
async def health_check():
    return {"status": "healthy", "service": "healthcare_ai"}

if __name__ == "__main__":
    uvicorn.run(
        "healthcare_api:app",
        host="0.0.0.0",
        port=8000,
        reload=True
    )
```