Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,148 +1,60 @@
|
|
| 1 |
import spaces
|
| 2 |
-
from snac import SNAC
|
| 3 |
-
import torch
|
| 4 |
import gradio as gr
|
| 5 |
-
from transformers import AutoModelForCausalLM, AutoTokenizer
|
| 6 |
-
from huggingface_hub import snapshot_download
|
| 7 |
from dotenv import load_dotenv
|
|
|
|
|
|
|
| 8 |
load_dotenv()
|
| 9 |
|
| 10 |
-
#
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
"
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
"
|
| 29 |
-
"pytorch_model.bin",
|
| 30 |
-
"training_args.bin",
|
| 31 |
-
"scheduler.pt",
|
| 32 |
-
"tokenizer.json",
|
| 33 |
-
"tokenizer_config.json",
|
| 34 |
-
"special_tokens_map.json",
|
| 35 |
-
"vocab.json",
|
| 36 |
-
"merges.txt",
|
| 37 |
-
"tokenizer.*"
|
| 38 |
-
]
|
| 39 |
-
)
|
| 40 |
-
|
| 41 |
-
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16)
|
| 42 |
-
model.to(device)
|
| 43 |
-
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
| 44 |
-
print(f"Modèle Orpheus chargé sur {device}")
|
| 45 |
-
|
| 46 |
-
# Traiter le texte d'entrée
|
| 47 |
-
def process_prompt(prompt, voice, tokenizer, device):
|
| 48 |
-
prompt = f"{voice}: {prompt}"
|
| 49 |
-
input_ids = tokenizer(prompt, return_tensors="pt").input_ids
|
| 50 |
-
|
| 51 |
-
start_token = torch.tensor([[128259]], dtype=torch.int64) # Début humain
|
| 52 |
-
end_tokens = torch.tensor([[128009, 128260]], dtype=torch.int64) # Fin du texte, Fin humain
|
| 53 |
-
|
| 54 |
-
modified_input_ids = torch.cat([start_token, input_ids, end_tokens], dim=1) # SOH SOT Texte EOT EOH
|
| 55 |
-
|
| 56 |
-
# Pas besoin de padding pour une seule entrée
|
| 57 |
-
attention_mask = torch.ones_like(modified_input_ids)
|
| 58 |
-
|
| 59 |
-
return modified_input_ids.to(device), attention_mask.to(device)
|
| 60 |
-
|
| 61 |
-
# Analyser les tokens de sortie en audio
|
| 62 |
-
def parse_output(generated_ids):
|
| 63 |
-
token_to_find = 128257
|
| 64 |
-
token_to_remove = 128258
|
| 65 |
-
|
| 66 |
-
token_indices = (generated_ids == token_to_find).nonzero(as_tuple=True)
|
| 67 |
-
|
| 68 |
-
if len(token_indices[1]) > 0:
|
| 69 |
-
last_occurrence_idx = token_indices[1][-1].item()
|
| 70 |
-
cropped_tensor = generated_ids[:, last_occurrence_idx+1:]
|
| 71 |
-
else:
|
| 72 |
-
cropped_tensor = generated_ids
|
| 73 |
-
|
| 74 |
-
processed_rows = []
|
| 75 |
-
for row in cropped_tensor:
|
| 76 |
-
masked_row = row[row != token_to_remove]
|
| 77 |
-
processed_rows.append(masked_row)
|
| 78 |
-
|
| 79 |
-
code_lists = []
|
| 80 |
-
for row in processed_rows:
|
| 81 |
-
row_length = row.size(0)
|
| 82 |
-
new_length = (row_length // 7) * 7
|
| 83 |
-
trimmed_row = row[:new_length]
|
| 84 |
-
trimmed_row = [t - 128266 for t in trimmed_row]
|
| 85 |
-
code_lists.append(trimmed_row)
|
| 86 |
-
|
| 87 |
-
return code_lists[0] # Retourner uniquement le premier pour un seul échantillon
|
| 88 |
-
|
| 89 |
-
# Redistribuer les codes pour la génération audio
|
| 90 |
-
def redistribute_codes(code_list, snac_model):
|
| 91 |
-
device = next(snac_model.parameters()).device # Obtenir le périphérique du modèle SNAC
|
| 92 |
-
|
| 93 |
-
layer_1 = []
|
| 94 |
-
layer_2 = []
|
| 95 |
-
layer_3 = []
|
| 96 |
-
for i in range((len(code_list)+1)//7):
|
| 97 |
-
layer_1.append(code_list[7*i])
|
| 98 |
-
layer_2.append(code_list[7*i+1]-4096)
|
| 99 |
-
layer_3.append(code_list[7*i+2]-(2*4096))
|
| 100 |
-
layer_3.append(code_list[7*i+3]-(3*4096))
|
| 101 |
-
layer_2.append(code_list[7*i+4]-(4*4096))
|
| 102 |
-
layer_3.append(code_list[7*i+5]-(5*4096))
|
| 103 |
-
layer_3.append(code_list[7*i+6]-(6*4096))
|
| 104 |
-
|
| 105 |
-
# Déplacer les tenseurs vers le même périphérique que le modèle SNAC
|
| 106 |
-
codes = [
|
| 107 |
-
torch.tensor(layer_1, device=device).unsqueeze(0),
|
| 108 |
-
torch.tensor(layer_2, device=device).unsqueeze(0),
|
| 109 |
-
torch.tensor(layer_3, device=device).unsqueeze(0)
|
| 110 |
-
]
|
| 111 |
-
|
| 112 |
-
audio_hat = snac_model.decode(codes)
|
| 113 |
-
return audio_hat.detach().squeeze().cpu().numpy() # Toujours retourner un tableau numpy CPU
|
| 114 |
|
| 115 |
-
# Fonction principale de génération
|
| 116 |
@spaces.GPU()
|
| 117 |
def generate_speech(text, voice, temperature, top_p, repetition_penalty, max_new_tokens, progress=gr.Progress()):
|
| 118 |
if not text.strip():
|
| 119 |
return None
|
| 120 |
|
| 121 |
try:
|
| 122 |
-
progress(0.
|
| 123 |
-
input_ids, attention_mask = process_prompt(text, voice, tokenizer, device)
|
| 124 |
|
| 125 |
-
|
| 126 |
-
|
| 127 |
-
|
| 128 |
-
|
| 129 |
-
|
| 130 |
-
|
| 131 |
-
|
| 132 |
-
|
| 133 |
-
top_p=top_p,
|
| 134 |
-
repetition_penalty=repetition_penalty,
|
| 135 |
-
num_return_sequences=1,
|
| 136 |
-
eos_token_id=128258,
|
| 137 |
-
)
|
| 138 |
|
| 139 |
-
progress(0.
|
| 140 |
-
code_list = parse_output(generated_ids)
|
| 141 |
|
| 142 |
-
|
| 143 |
-
audio_samples =
|
| 144 |
|
| 145 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 146 |
except Exception as e:
|
| 147 |
print(f"Erreur lors de la génération de la parole: {e}")
|
| 148 |
return None
|
|
@@ -175,6 +87,11 @@ with gr.Blocks(title="Orpheus Text-to-Speech") as demo:
|
|
| 175 |
- Ajoutez des éléments paralinguistiques comme {", ".join(EMOTIVE_TAGS)} ou `euh` pour une parole plus humaine.
|
| 176 |
- Les textes plus longs fonctionnent généralement mieux que les phrases très courtes
|
| 177 |
- Augmenter `repetition_penalty` et `temperature` fait parler le modèle plus rapidement.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 178 |
""")
|
| 179 |
with gr.Row():
|
| 180 |
with gr.Column(scale=3):
|
|
|
|
| 1 |
import spaces
|
|
|
|
|
|
|
| 2 |
import gradio as gr
|
|
|
|
|
|
|
| 3 |
from dotenv import load_dotenv
|
| 4 |
+
import numpy as np
|
| 5 |
+
from orpheus_cpp import OrpheusCpp
|
| 6 |
load_dotenv()
|
| 7 |
|
| 8 |
+
# Initialiser le modèle Orpheus-CPP avec le modèle français original
|
| 9 |
+
print("Chargement du modèle Orpheus-CPP...")
|
| 10 |
+
try:
|
| 11 |
+
# Utilisez le même modèle français que précédemment
|
| 12 |
+
orpheus = OrpheusCpp(
|
| 13 |
+
model_path="canopylabs/3b-fr-ft-research_release",
|
| 14 |
+
context_size=2048,
|
| 15 |
+
gpu_layers=32 # Utiliser le GPU si disponible
|
| 16 |
+
)
|
| 17 |
+
print("Modèle Orpheus-CPP chargé avec succès")
|
| 18 |
+
except Exception as e:
|
| 19 |
+
print(f"Erreur lors du chargement du modèle spécifié: {e}")
|
| 20 |
+
print("Tentative de chargement avec le modèle français par défaut...")
|
| 21 |
+
try:
|
| 22 |
+
orpheus = OrpheusCpp()
|
| 23 |
+
print("Modèle Orpheus-CPP chargé avec les paramètres par défaut")
|
| 24 |
+
except Exception as e:
|
| 25 |
+
print(f"Erreur lors du chargement du modèle par défaut: {e}")
|
| 26 |
+
print("Vérifiez l'installation d'orpheus-cpp et les dépendances")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 27 |
|
| 28 |
+
# Fonction principale de génération avec orpheus-cpp
|
| 29 |
@spaces.GPU()
|
| 30 |
def generate_speech(text, voice, temperature, top_p, repetition_penalty, max_new_tokens, progress=gr.Progress()):
|
| 31 |
if not text.strip():
|
| 32 |
return None
|
| 33 |
|
| 34 |
try:
|
| 35 |
+
progress(0.2, "Traitement du texte...")
|
|
|
|
| 36 |
|
| 37 |
+
# Configuration des options de génération
|
| 38 |
+
options = {
|
| 39 |
+
"voice_id": voice,
|
| 40 |
+
"temperature": temperature,
|
| 41 |
+
"top_p": top_p,
|
| 42 |
+
"repetition_penalty": repetition_penalty,
|
| 43 |
+
"max_tokens": max_new_tokens
|
| 44 |
+
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 45 |
|
| 46 |
+
progress(0.5, "Génération audio...")
|
|
|
|
| 47 |
|
| 48 |
+
# Génération avec orpheus-cpp
|
| 49 |
+
sample_rate, audio_samples = orpheus.tts(text, options=options)
|
| 50 |
|
| 51 |
+
progress(0.9, "Finalisation...")
|
| 52 |
+
|
| 53 |
+
# Convertir en tableau numpy si nécessaire
|
| 54 |
+
if not isinstance(audio_samples, np.ndarray):
|
| 55 |
+
audio_samples = np.array(audio_samples)
|
| 56 |
+
|
| 57 |
+
return (sample_rate, audio_samples)
|
| 58 |
except Exception as e:
|
| 59 |
print(f"Erreur lors de la génération de la parole: {e}")
|
| 60 |
return None
|
|
|
|
| 87 |
- Ajoutez des éléments paralinguistiques comme {", ".join(EMOTIVE_TAGS)} ou `euh` pour une parole plus humaine.
|
| 88 |
- Les textes plus longs fonctionnent généralement mieux que les phrases très courtes
|
| 89 |
- Augmenter `repetition_penalty` et `temperature` fait parler le modèle plus rapidement.
|
| 90 |
+
|
| 91 |
+
## Améliorations avec orpheus-cpp:
|
| 92 |
+
- Performances optimisées et temps de génération réduit
|
| 93 |
+
- Utilisation plus efficace de la mémoire
|
| 94 |
+
- Latence réduite pour une meilleure expérience utilisateur
|
| 95 |
""")
|
| 96 |
with gr.Row():
|
| 97 |
with gr.Column(scale=3):
|