File size: 24,821 Bytes
d87fc8a be26939 d87fc8a be26939 d87fc8a 84cf73f d87fc8a be26939 d87fc8a be26939 fda0540 be26939 0c04c7f be26939 fda0540 be26939 0c04c7f be26939 fda0540 be26939 0c04c7f fda0540 be26939 fda0540 0c04c7f be26939 0c04c7f be26939 0c04c7f a12ef5d be26939 a12ef5d be26939 fda0540 a12ef5d fda0540 be26939 a12ef5d be26939 0c04c7f be26939 84cf73f be26939 84cf73f be26939 0c04c7f be26939 a12ef5d be26939 d87fc8a a12ef5d d87fc8a be26939 891c332 84cf73f d87fc8a a12ef5d d87fc8a 84cf73f d87fc8a 84cf73f be26939 d87fc8a 891c332 d87fc8a 891c332 84cf73f 891c332 84cf73f 891c332 be26939 891c332 be26939 891c332 be26939 891c332 be26939 d87fc8a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 |
from huggingface_hub import HfFileSystem
import pandas as pd
from utils import logger
from datetime import datetime, timedelta
import threading
import traceback
import json
import re
from typing import List, Tuple, Optional
# NOTE: if caching is an issue, try adding `use_listings_cache=False`
fs = HfFileSystem()
IMPORTANT_MODELS = [
"auto",
"bert", # old but dominant (encoder only)
"gpt2", # old (decoder)
"t5", # old (encoder-decoder)
"modernbert", # (encoder only)
"vit", # old (vision) - fixed comma
"clip", # old but dominant (vision)
"detr", # objection detection, segmentation (vision)
"table-transformer", # objection detection (visioin) - maybe just detr?
"got_ocr2", # ocr (vision)
"whisper", # old but dominant (audio)
"wav2vec2", # old (audio)
"llama", # new and dominant (meta)
"gemma3", # new (google)
"qwen2", # new (Alibaba)
"mistral3", # new (Mistral) - added missing comma
"qwen2_5_vl", # new (vision)
"llava", # many models from it (vision)
"smolvlm", # new (video)
"internvl", # new (video)
"gemma3n", # new (omnimodal models)
"qwen2_5_omni", # new (omnimodal models)
]
KEYS_TO_KEEP = [
"success_amd",
"success_nvidia",
"skipped_amd",
"skipped_nvidia",
"failed_multi_no_amd",
"failed_multi_no_nvidia",
"failed_single_no_amd",
"failed_single_no_nvidia",
"failures_amd",
"failures_nvidia",
"job_link_amd",
"job_link_nvidia",
]
def log_dataframe_link(link: str) -> str:
"""
Adds the link to the dataset in the logs, modifies it to get a clockable link and then returns the date of the
report.
"""
if link.startswith("sample_"):
return "9999-99-99"
logger.info(f"Reading df located at {link}")
# Make sure the links starts with an http adress
if link.startswith("hf://"):
link = "https://huggingface.co/" + link.removeprefix("hf://")
# Pattern to match transformers_daily_ci followed by any path, then a date (YYYY-MM-DD format)
pattern = r'transformers_daily_ci(.*?)/(\d{4}-\d{2}-\d{2})'
match = re.search(pattern, link)
# Failure case:
if not match:
logger.error("Could not find transformers_daily_ci and.or date in the link")
return "9999-99-99"
# Replace the path between with blob/main
path_between = match.group(1)
link = link.replace("transformers_daily_ci" + path_between, "transformers_daily_ci/blob/main")
logger.info(f"Link to data source: {link}")
# Return the date
return match.group(2)
def infer_latest_update_msg(date_df_amd: str, date_df_nvidia: str) -> str:
# Early return if one of the dates is invalid
if date_df_amd.startswith("9999") and date_df_nvidia.startswith("9999"):
return "could not find last update time"
# Warn if dates are not the same
if date_df_amd != date_df_nvidia:
logger.warning(f"Different dates found: {date_df_amd} (AMD) vs {date_df_nvidia} (NVIDIA)")
# Take the latest date and format it
try:
latest_date = max(date_df_amd, date_df_nvidia)
yyyy, mm, dd = latest_date.split("-")
return f"last updated {mm}/{dd}/{yyyy}"
except Exception as e:
logger.error(f"When trying to infer latest date, got error {e}")
return "could not find last update time"
def read_one_dataframe(json_path: str, device_label: str) -> tuple[pd.DataFrame, str]:
df_upload_date = log_dataframe_link(json_path)
df = pd.read_json(json_path, orient="index")
df.index.name = "model_name"
df[f"failed_multi_no_{device_label}"] = df["failures"].apply(lambda x: len(x["multi"]) if "multi" in x else 0)
df[f"failed_single_no_{device_label}"] = df["failures"].apply(lambda x: len(x["single"]) if "single" in x else 0)
return df, df_upload_date
def get_available_dates() -> List[str]:
"""Get list of available dates from both AMD and NVIDIA datasets."""
try:
# Get AMD dates - the path structure is: YYYY-MM-DD/runs/{run_id}/ci_results_run_models_gpu/model_results.json
amd_src = "hf://datasets/optimum-amd/transformers_daily_ci/**/runs/**/ci_results_run_models_gpu/model_results.json"
files_amd = sorted(fs.glob(amd_src, refresh=True), reverse=True)
logger.info(f"Found {len(files_amd)} AMD files")
# Get NVIDIA dates - structure is: YYYY-MM-DD/ci_results_run_models_gpu/model_results.json
nvidia_src = "hf://datasets/hf-internal-testing/transformers_daily_ci/*/ci_results_run_models_gpu/model_results.json"
files_nvidia = sorted(fs.glob(nvidia_src, refresh=True), reverse=True)
logger.info(f"Found {len(files_nvidia)} NVIDIA files")
# Extract dates from file paths
amd_dates = set()
for file_path in files_amd:
# Pattern to match the date in the AMD path: YYYY-MM-DD/runs/{run_id}/ci_results_run_models_gpu/model_results.json
pattern = r'transformers_daily_ci/(\d{4}-\d{2}-\d{2})/runs/[^/]+/ci_results_run_models_gpu/model_results\.json'
match = re.search(pattern, file_path)
if match:
amd_dates.add(match.group(1))
else:
# Log unmatched paths for debugging
logger.debug(f"AMD file path didn't match pattern: {file_path}")
# Log a few example AMD file paths for debugging
if files_amd:
logger.info(f"Example AMD file paths: {files_amd[:3]}")
nvidia_dates = set()
for file_path in files_nvidia:
# Pattern to match the date in the NVIDIA path: YYYY-MM-DD/ci_results_run_models_gpu/model_results.json
pattern = r'transformers_daily_ci/(\d{4}-\d{2}-\d{2})/ci_results_run_models_gpu/model_results\.json'
match = re.search(pattern, file_path)
if match:
nvidia_dates.add(match.group(1))
logger.info(f"AMD dates: {sorted(amd_dates, reverse=True)[:5]}...") # Show first 5
logger.info(f"NVIDIA dates: {sorted(nvidia_dates, reverse=True)[:5]}...") # Show first 5
# Return intersection of both datasets (dates where both have data)
common_dates = sorted(amd_dates.intersection(nvidia_dates), reverse=True)
logger.info(f"Common dates: {len(common_dates)} dates where both AMD and NVIDIA have data")
if common_dates:
return common_dates[:30] # Limit to last 30 days for performance
else:
# If no real dates available, generate fake dates for the last 7 days
logger.warning("No real dates available, generating fake dates for demo purposes")
fake_dates = []
today = datetime.now()
for i in range(7):
date = today - timedelta(days=i)
fake_dates.append(date.strftime("%Y-%m-%d"))
return fake_dates
except Exception as e:
logger.error(f"Error getting available dates: {e}")
# Generate fake dates when there's an error
logger.info("Generating fake dates due to error")
fake_dates = []
today = datetime.now()
for i in range(7):
date = today - timedelta(days=i)
fake_dates.append(date.strftime("%Y-%m-%d"))
return fake_dates
def get_data_for_date(target_date: str) -> tuple[pd.DataFrame, str]:
"""Get data for a specific date."""
try:
# For AMD, we need to find the specific run file for the date
# AMD structure: YYYY-MM-DD/runs/{run_id}/ci_results_run_models_gpu/model_results.json
amd_src = f"hf://datasets/optimum-amd/transformers_daily_ci/{target_date}/runs/*/ci_results_run_models_gpu/model_results.json"
amd_files = fs.glob(amd_src, refresh=True)
if not amd_files:
raise FileNotFoundError(f"No AMD data found for date {target_date}")
# Use the first (most recent) run for the date
amd_file = amd_files[0]
# Ensure the AMD file path has the hf:// prefix
if not amd_file.startswith("hf://"):
amd_file = f"hf://{amd_file}"
# NVIDIA structure: YYYY-MM-DD/ci_results_run_models_gpu/model_results.json
nvidia_src = f"hf://datasets/hf-internal-testing/transformers_daily_ci/{target_date}/ci_results_run_models_gpu/model_results.json"
# Read dataframes - try each platform independently
df_amd = pd.DataFrame()
df_nvidia = pd.DataFrame()
try:
df_amd, _ = read_one_dataframe(amd_file, "amd")
logger.info(f"Successfully loaded AMD data for {target_date}")
except Exception as e:
logger.warning(f"Failed to load AMD data for {target_date}: {e}")
try:
df_nvidia, _ = read_one_dataframe(nvidia_src, "nvidia")
logger.info(f"Successfully loaded NVIDIA data for {target_date}")
except Exception as e:
logger.warning(f"Failed to load NVIDIA data for {target_date}: {e}")
# If both failed, return empty dataframe
if df_amd.empty and df_nvidia.empty:
logger.warning(f"No data available for either platform on {target_date}")
return pd.DataFrame(), target_date
# Join both dataframes (outer join to include data from either platform)
if not df_amd.empty and not df_nvidia.empty:
joined = df_amd.join(df_nvidia, rsuffix="_nvidia", lsuffix="_amd", how="outer")
elif not df_amd.empty:
joined = df_amd.copy()
else:
joined = df_nvidia.copy()
joined = joined[KEYS_TO_KEEP]
joined.index = joined.index.str.replace("^models_", "", regex=True)
# Filter out all but important models
important_models_lower = [model.lower() for model in IMPORTANT_MODELS]
filtered_joined = joined[joined.index.str.lower().isin(important_models_lower)]
return filtered_joined, target_date
except Exception as e:
logger.error(f"Error getting data for date {target_date}: {e}")
# Return empty dataframe instead of sample data for historical functionality
return pd.DataFrame(), target_date
def get_historical_data(start_date: str, end_date: str, sample_data = False) -> pd.DataFrame:
"""Get historical data for a date range."""
if sample_data:
return get_fake_historical_data(start_date, end_date)
try:
start_dt = datetime.strptime(start_date, "%Y-%m-%d")
end_dt = datetime.strptime(end_date, "%Y-%m-%d")
historical_data = []
current_dt = start_dt
while current_dt <= end_dt:
date_str = current_dt.strftime("%Y-%m-%d")
try:
df, _ = get_data_for_date(date_str)
# Only add non-empty dataframes
if not df.empty:
df['date'] = date_str
historical_data.append(df)
logger.info(f"Loaded data for {date_str}")
else:
logger.warning(f"No data available for {date_str}")
except Exception as e:
logger.warning(f"Could not load data for {date_str}: {e}")
current_dt += timedelta(days=1)
# Combine all dataframes
combined_df = pd.concat(historical_data, ignore_index=False)
return combined_df
except Exception as e:
logger.error(f"Error getting historical data: {e}")
# Fall back to fake data when there's an error
logger.info("Falling back to fake historical data due to error")
return get_fake_historical_data(start_date, end_date)
def get_distant_data() -> tuple[pd.DataFrame, str]:
# Retrieve AMD dataframe
amd_src = "hf://datasets/optimum-amd/transformers_daily_ci/**/runs/**/ci_results_run_models_gpu/model_results.json"
files_amd = sorted(fs.glob(amd_src, refresh=True), reverse=True)
df_amd, date_df_amd = read_one_dataframe(f"hf://{files_amd[0]}", "amd")
# Retrieve NVIDIA dataframe, which pattern should be:
# hf://datasets/hf-internal-testing`/transformers_daily_ci/raw/main/YYYY-MM-DD/ci_results_run_models_gpu/model_results.json
nvidia_src = "hf://datasets/hf-internal-testing/transformers_daily_ci/*/ci_results_run_models_gpu/model_results.json"
files_nvidia = sorted(fs.glob(nvidia_src, refresh=True), reverse=True)
# NOTE: should this be removeprefix instead of lstrip?
nvidia_path = files_nvidia[0].lstrip('datasets/hf-internal-testing/transformers_daily_ci/')
nvidia_path = "https://huggingface.co/datasets/hf-internal-testing/transformers_daily_ci/raw/main/" + nvidia_path
df_nvidia, date_df_nvidia = read_one_dataframe(nvidia_path, "nvidia")
# Infer and format the latest df date
latest_update_msg = infer_latest_update_msg(date_df_amd, date_df_nvidia)
# Join both dataframes
joined = df_amd.join(df_nvidia, rsuffix="_nvidia", lsuffix="_amd", how="outer")
joined = joined[KEYS_TO_KEEP]
joined.index = joined.index.str.replace("^models_", "", regex=True)
# Fitler out all but important models
important_models_lower = [model.lower() for model in IMPORTANT_MODELS]
filtered_joined = joined[joined.index.str.lower().isin(important_models_lower)]
# Warn for ach missing important models
for model in IMPORTANT_MODELS:
if model not in filtered_joined.index:
print(f"[WARNING] Model {model} was missing from index.")
return filtered_joined, latest_update_msg
def get_sample_data() -> tuple[pd.DataFrame, str]:
# Retrieve sample dataframes
df_amd, _ = read_one_dataframe("sample_amd.json", "amd")
df_nvidia, _ = read_one_dataframe("sample_nvidia.json", "nvidia")
# Join both dataframes
joined = df_amd.join(df_nvidia, rsuffix="_nvidia", lsuffix="_amd", how="outer")
joined = joined[KEYS_TO_KEEP]
joined.index = joined.index.str.replace("^models_", "", regex=True)
# Fitler out all but important models
important_models_lower = [model.lower() for model in IMPORTANT_MODELS]
filtered_joined = joined[joined.index.str.lower().isin(important_models_lower)]
# Prefix all model names with "sample_"
filtered_joined.index = "sample_" + filtered_joined.index
return filtered_joined, "sample data was loaded"
def get_fake_historical_data(start_date: str, end_date: str) -> pd.DataFrame:
"""Generate fake historical data for a date range when real data loading fails."""
try:
start_dt = datetime.strptime(start_date, "%Y-%m-%d")
end_dt = datetime.strptime(end_date, "%Y-%m-%d")
# Generate fake data for each date in the range
historical_data = []
current_dt = start_dt
# Get base sample data to use as template
sample_df, _ = get_sample_data()
while current_dt <= end_dt:
date_str = current_dt.strftime("%Y-%m-%d")
# Create a copy of sample data for this date with some random variations
date_df = sample_df.copy()
date_df['date'] = date_str
# Add some random variation to make it look more realistic
import random
for idx in date_df.index:
# Vary the success/failure counts slightly (±20%)
for col in ['success_amd', 'success_nvidia', 'skipped_amd', 'skipped_nvidia']:
if col in date_df.columns:
original_val = date_df.loc[idx, col]
if pd.notna(original_val) and original_val > 0:
variation = random.uniform(0.8, 1.2)
date_df.loc[idx, col] = max(0, int(original_val * variation))
# Vary failure counts more dramatically to show trends
for col in ['failed_multi_no_amd', 'failed_multi_no_nvidia', 'failed_single_no_amd', 'failed_single_no_nvidia']:
if col in date_df.columns:
original_val = date_df.loc[idx, col]
if pd.notna(original_val):
# Sometimes have more failures, sometimes fewer
variation = random.uniform(0.5, 2.0)
date_df.loc[idx, col] = max(0, int(original_val * variation))
historical_data.append(date_df)
current_dt += timedelta(days=1)
if not historical_data:
logger.warning("No fake historical data generated")
return pd.DataFrame()
# Combine all dataframes
combined_df = pd.concat(historical_data, ignore_index=False)
logger.info(f"Generated fake historical data: {len(combined_df)} records from {start_date} to {end_date}")
return combined_df
except Exception as e:
logger.error(f"Error generating fake historical data: {e}")
return pd.DataFrame()
def safe_extract(row: pd.DataFrame, key: str) -> int:
return int(row.get(key, 0)) if pd.notna(row.get(key, 0)) else 0
def extract_model_data(row: pd.Series) -> tuple[dict[str, int], dict[str, int], int, int, int, int]:
"""Extract and process model data from DataFrame row."""
# Handle missing values and get counts directly from dataframe
success_nvidia = safe_extract(row, "success_nvidia")
success_amd = safe_extract(row, "success_amd")
skipped_nvidia = safe_extract(row, "skipped_nvidia")
skipped_amd = safe_extract(row, "skipped_amd")
failed_multi_amd = safe_extract(row, 'failed_multi_no_amd')
failed_multi_nvidia = safe_extract(row, 'failed_multi_no_nvidia')
failed_single_amd = safe_extract(row, 'failed_single_no_amd')
failed_single_nvidia = safe_extract(row, 'failed_single_no_nvidia')
# Calculate total failures
total_failed_amd = failed_multi_amd + failed_single_amd
total_failed_nvidia = failed_multi_nvidia + failed_single_nvidia
# Create stats dictionaries directly from dataframe values
amd_stats = {
'passed': success_amd,
'failed': total_failed_amd,
'skipped': skipped_amd,
'error': 0 # Not available in this dataset
}
nvidia_stats = {
'passed': success_nvidia,
'failed': total_failed_nvidia,
'skipped': skipped_nvidia,
'error': 0 # Not available in this dataset
}
return amd_stats, nvidia_stats, failed_multi_amd, failed_single_amd, failed_multi_nvidia, failed_single_nvidia
class CIResults:
def __init__(self):
self.df = pd.DataFrame()
self.available_models = []
self.latest_update_msg = ""
self.available_dates = []
self.historical_df = pd.DataFrame()
self.all_historical_data = pd.DataFrame() # Store all historical data at startup
self.sample_data = False
def load_data(self) -> None:
"""Load data from the data source."""
# Try loading the distant data, and fall back on sample data for local tinkering
try:
logger.info("Loading distant data...")
new_df, latest_update_msg = get_distant_data()
self.latest_update_msg = latest_update_msg
self.available_dates = get_available_dates()
logger.info(f"Available dates: {len(self.available_dates)} dates")
if self.available_dates:
logger.info(f"Date range: {self.available_dates[-1]} to {self.available_dates[0]}")
else:
logger.warning("No available dates found")
self.available_dates = []
except Exception as e:
error_msg = [
"Loading data failed:",
"-" * 120,
traceback.format_exc(),
"-" * 120,
"Falling back on sample data."
]
logger.error("\n".join(error_msg))
self.sample_data = True
new_df, latest_update_msg = get_sample_data()
self.latest_update_msg = latest_update_msg
self.available_dates = None
# Update attributes
self.df = new_df
self.available_models = new_df.index.tolist()
# Load all historical data at startup
self.load_all_historical_data()
# Log and return distant load status
logger.info(f"Data loaded successfully: {len(self.available_models)} models")
logger.info(f"Models: {self.available_models[:5]}{'...' if len(self.available_models) > 5 else ''}")
logger.info(f"Latest update message: {self.latest_update_msg}")
# Log a preview of the df
msg = {}
for model in self.available_models[:3]:
msg[model] = {}
for col in self.df.columns:
value = self.df.loc[model, col]
if not isinstance(value, int):
value = str(value)
if len(value) > 10:
value = value[:10] + "..."
msg[model][col] = value
logger.info(json.dumps(msg, indent=4))
def load_all_historical_data(self) -> None:
"""Load all available historical data at startup."""
try:
if not self.available_dates:
# Generate fake dates when no real dates are available
fake_dates = []
today = datetime.now()
for i in range(7):
date = today - timedelta(days=i)
fake_dates.append(date.strftime("%Y-%m-%d"))
self.available_dates = fake_dates
logger.info(f"No available dates found, generated {len(self.available_dates)} sample dates.")
logger.info(f"Loading all historical data for {len(self.available_dates)} dates...")
start_date = self.available_dates[-1] # Oldest date
end_date = self.available_dates[0] # Newest date
self.all_historical_data = get_historical_data(start_date, end_date, self.sample_data)
logger.info(f"All historical data loaded: {len(self.all_historical_data)} records")
except Exception as e:
logger.error(f"Error loading all historical data: {e}")
self.all_historical_data = pd.DataFrame()
def load_historical_data(self, start_date: str, end_date: str) -> None:
"""Load historical data for a date range from pre-loaded data."""
try:
logger.info(f"Filtering historical data from {start_date} to {end_date}")
if self.all_historical_data.empty:
logger.warning("No pre-loaded historical data available")
self.historical_df = pd.DataFrame()
return
# Filter the pre-loaded data by date range
start_dt = datetime.strptime(start_date, "%Y-%m-%d")
end_dt = datetime.strptime(end_date, "%Y-%m-%d")
# Filter data within the date range
filtered_data = []
for date_str in self.all_historical_data['date'].unique():
date_dt = datetime.strptime(date_str, "%Y-%m-%d")
if start_dt <= date_dt <= end_dt:
date_data = self.all_historical_data[self.all_historical_data['date'] == date_str]
filtered_data.append(date_data)
if filtered_data:
self.historical_df = pd.concat(filtered_data, ignore_index=False)
logger.info(f"Historical data filtered: {len(self.historical_df)} records for {start_date} to {end_date}")
else:
self.historical_df = pd.DataFrame()
logger.warning(f"No historical data found for date range {start_date} to {end_date}")
except Exception as e:
logger.error(f"Error filtering historical data: {e}")
self.historical_df = pd.DataFrame()
def schedule_data_reload(self):
"""Schedule the next data reload."""
def reload_data():
self.load_data()
# Schedule the next reload in 15 minutes (900 seconds)
timer = threading.Timer(900.0, reload_data)
timer.daemon = True # Dies when main thread dies
timer.start()
logger.info("Next data reload scheduled in 15 minutes")
# Start the first reload timer
timer = threading.Timer(900.0, reload_data)
timer.daemon = True
timer.start()
logger.info("Data auto-reload scheduled every 15 minutes")
|