File size: 25,135 Bytes
d87fc8a
 
 
 
 
 
 
 
 
a12ef5d
d87fc8a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
be26939
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a12ef5d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
be26939
a12ef5d
be26939
 
 
 
 
 
d87fc8a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
be26939
 
 
 
 
 
 
 
 
 
d87fc8a
be26939
 
a12ef5d
 
 
 
 
 
 
 
be26939
 
 
 
 
 
d87fc8a
be26939
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a12ef5d
 
 
 
 
 
 
 
 
 
 
 
 
 
d87fc8a
 
 
 
be26939
 
a12ef5d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
be26939
 
 
d87fc8a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a12ef5d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d87fc8a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
be26939
 
 
 
 
 
a12ef5d
be26939
 
 
 
 
 
a12ef5d
 
be26939
 
 
a12ef5d
be26939
 
a12ef5d
 
 
 
be26939
 
a12ef5d
 
 
 
 
 
 
 
 
 
891c332
a12ef5d
891c332
a12ef5d
 
 
 
 
 
 
 
 
 
 
 
891c332
a12ef5d
891c332
a12ef5d
 
891c332
a12ef5d
891c332
a12ef5d
be26939
 
a12ef5d
be26939
 
 
 
a12ef5d
 
 
891c332
be26939
 
 
 
891c332
be26939
a12ef5d
891c332
be26939
 
 
a12ef5d
be26939
a12ef5d
891c332
a12ef5d
 
 
 
 
 
 
 
891c332
be26939
 
 
891c332
be26939
 
 
 
891c332
be26939
 
 
 
 
 
a12ef5d
be26939
 
a12ef5d
 
be26939
 
a12ef5d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
be26939
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a12ef5d
be26939
a12ef5d
 
be26939
 
d87fc8a
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
import matplotlib.pyplot as plt
import matplotlib
import pandas as pd
import gradio as gr

from data import CIResults
from utils import logger
from summary_page import create_summary_page
from model_page import plot_model_stats
from time_series_gradio import create_time_series_summary_gradio, create_model_time_series_gradio


# Configure matplotlib to prevent memory warnings and set dark background
matplotlib.rcParams['figure.facecolor'] = '#000000'
matplotlib.rcParams['axes.facecolor'] = '#000000'
matplotlib.rcParams['savefig.facecolor'] = '#000000'
plt.ioff()  # Turn off interactive mode to prevent figure accumulation


# Load data once at startup
Ci_results = CIResults()
Ci_results.load_data()
# Start the auto-reload scheduler
Ci_results.schedule_data_reload()


# Function to check if a model has failures
def model_has_failures(model_name):
    """Check if a model has any failures (AMD or NVIDIA)."""
    if Ci_results.df is None or Ci_results.df.empty:
        return False
    
    # Normalize model name to match DataFrame index
    model_name_lower = model_name.lower()
    
    # Check if model exists in DataFrame
    if model_name_lower not in Ci_results.df.index:
        return False
    row = Ci_results.df.loc[model_name_lower]
    
    # Check for failures in both AMD and NVIDIA
    amd_multi_failures = row.get('failed_multi_no_amd', 0)
    amd_single_failures = row.get('failed_single_no_amd', 0)
    nvidia_multi_failures = row.get('failed_multi_no_nvidia', 0)
    nvidia_single_failures = row.get('failed_single_no_nvidia', 0)
    return any([
        amd_multi_failures > 0,
        amd_single_failures > 0,
        nvidia_multi_failures > 0,
        nvidia_single_failures > 0,
    ])


# Function to get current description text
def get_description_text():
    """Get description text with integrated last update time."""
    msg = [
        "Transformer CI Dashboard",
        "-",
        "AMD runs on MI325",
        "NVIDIA runs on A10",
    ]
    msg = ["**" + x + "**" for x in msg] + [""]
    if Ci_results.latest_update_msg:
        msg.append(f"*({Ci_results.latest_update_msg})*")
    else:
        msg.append("*(loading...)*")
    return "<br>".join(msg)

# Load CSS from external file
def load_css():
    try:
        with open("styles.css", "r") as f:
            css_content = f.read()
        
        return css_content
    except FileNotFoundError:
        logger.warning("styles.css not found, using minimal default styles")
        return "body { background: #000; color: #fff; }"


# Create the Gradio interface with sidebar and dark theme
with gr.Blocks(title="Model Test Results Dashboard", css=load_css()) as demo:


    with gr.Row():
        # Sidebar for model selection
        with gr.Column(scale=1, elem_classes=["sidebar"]):
            gr.Markdown("# πŸ€– TCID", elem_classes=["sidebar-title"])

            # Description with integrated last update time
            description_text = get_description_text()
            description_display = gr.Markdown(description_text, elem_classes=["sidebar-description"])

            # View toggle buttons
            with gr.Row(elem_classes=["view-toggle-row"]):
                current_view_button = gr.Button(
                    "current\nπŸ“Š",
                    variant="primary",
                    size="lg",
                    elem_classes=["view-toggle-button", "view-toggle-active"]
                )
                historical_view_button = gr.Button(
                    "history\nπŸ“ˆ",
                    variant="secondary",
                    size="lg",
                    elem_classes=["view-toggle-button"]
                )

            # Date selection toggle button (initially hidden)
            date_toggle_button = gr.Button(
                "β–Ί Date Selection",
                variant="secondary",
                elem_classes=["date-header"],
                visible=False
            )

            # Date selection container (collapsible) - start folded
            with gr.Column(visible=True, elem_classes=["date-selection", "date-selection-hidden"]) as date_selection:
                start_date = gr.Dropdown(
                    choices=Ci_results.available_dates,
                    value=Ci_results.available_dates[-1] if Ci_results.available_dates else None,  # Last date (oldest)
                    label="Start Date",
                    elem_classes=["date-dropdown"]
                )
                end_date = gr.Dropdown(
                    choices=Ci_results.available_dates,
                    value=Ci_results.available_dates[0] if Ci_results.available_dates else None,  # First date (newest)
                    label="End Date",
                    elem_classes=["date-dropdown"]
                )
                load_historical_button = gr.Button(
                    "Reload Historical Data",
                    variant="primary",
                    size="sm",
                    elem_classes=["load-historical-button"]
                )

            # Summary button (for current view)
            summary_button = gr.Button(
                "summary\nπŸ“Š",
                variant="primary",
                size="lg",
                elem_classes=["summary-button"]
            )

            # Model selection header (clickable toggle)
            model_toggle_button = gr.Button(
                f"β–Ί Select model ({len(Ci_results.available_models)})",
                variant="secondary",
                elem_classes=["model-header"]
            )

            # Model buttons container (collapsible) - start folded
            with gr.Column(elem_classes=["model-list", "model-list-hidden"]) as model_list_container:
                # Create individual buttons for each model
                model_buttons = []
                model_choices = [model.lower() for model in Ci_results.available_models] if Ci_results.available_models else ["auto", "bert", "clip", "llama"]
                
                print(f"Creating {len(model_choices)} model buttons: {model_choices}")

                for model_name in model_choices:
                    # Check if model has failures to determine styling
                    has_failures = model_has_failures(model_name)
                    button_classes = ["model-button"]
                    if has_failures:
                        button_classes.append("model-button-failed")
                    
                    btn = gr.Button(
                        model_name,
                        variant="secondary",
                        size="sm",
                        elem_classes=button_classes
                    )
                    model_buttons.append(btn)

            # CI job links at bottom of sidebar
            ci_links_display = gr.Markdown("πŸ”— **CI Jobs:** *Loading...*", elem_classes=["sidebar-links"])

        # Main content area
        with gr.Column(scale=4, elem_classes=["main-content"]):
            # Current view components
            with gr.Column(visible=True, elem_classes=["current-view"]) as current_view:
                # Summary display (default view)
                summary_display = gr.Plot(
                    value=create_summary_page(Ci_results.df, Ci_results.available_models),
                    label="",
                    format="png",
                    elem_classes=["plot-container"],
                    visible=True
                )

                # Detailed view components (hidden by default)
                with gr.Column(visible=False, elem_classes=["detail-view"]) as detail_view:
                    # Back button for current view detail
                    back_to_summary_current_button = gr.Button(
                        "← Back to Summary",
                        variant="secondary",
                        size="sm",
                        elem_classes=["back-button"]
                    )
                    
                    # Create the plot output
                    plot_output = gr.Plot(
                        label="",
                        format="png",
                        elem_classes=["plot-container"]
                    )

                    # Create two separate failed tests displays in a row layout
                    with gr.Row():
                        with gr.Column(scale=1):
                            amd_failed_tests_output = gr.Textbox(
                                value="",
                                lines=8,
                                max_lines=8,
                                interactive=False,
                                container=False,
                                elem_classes=["failed-tests"]
                            )
                        with gr.Column(scale=1):
                            nvidia_failed_tests_output = gr.Textbox(
                                value="",
                                lines=8,
                                max_lines=8,
                                interactive=False,
                                container=False,
                                elem_classes=["failed-tests"]
                            )

            # Historical view components (hidden by default)
            with gr.Column(visible=False, elem_classes=["historical-view"]) as historical_view:
                
                
                # Time-series summary displays (multiple Gradio plots)
                time_series_failure_rates = gr.LinePlot(
                    label="",
                    elem_classes=["plot-container"]
                )
                
                time_series_amd_tests = gr.LinePlot(
                    label="",
                    elem_classes=["plot-container"]
                )
                
                time_series_nvidia_tests = gr.LinePlot(
                    label="",
                    elem_classes=["plot-container"]
                )

                # Time-series model view (hidden by default)
                with gr.Column(visible=False, elem_classes=["time-series-detail-view"]) as time_series_detail_view:
                    # Back button for time-series model view
                    back_to_summary_button = gr.Button(
                        "← Back to Summary",
                        variant="secondary",
                        size="sm",
                        elem_classes=["back-button"]
                    )
                    
                    # Time-series plots for specific model (with spacing)
                    time_series_amd_model_plot = gr.LinePlot(
                        label="",
                        elem_classes=["plot-container"]
                    )
                    
                    time_series_nvidia_model_plot = gr.LinePlot(
                        label="",
                        elem_classes=["plot-container"]
                    )

    # Set up click handlers for model buttons
    for i, btn in enumerate(model_buttons):
        model_name = model_choices[i]
        btn.click(
            fn=lambda selected_model=model_name: plot_model_stats(Ci_results.df, selected_model),
            outputs=[plot_output, amd_failed_tests_output, nvidia_failed_tests_output]
        ).then(
            fn=lambda: [gr.update(visible=False), gr.update(visible=True)],
            outputs=[summary_display, detail_view]
        )

    # Model toggle functionality
    def toggle_model_list(current_visible):
        """Toggle the visibility of the model list."""
        new_visible = not current_visible
        arrow = "β–Ό" if new_visible else "β–Ί"
        button_text = f"{arrow} Select model ({len(Ci_results.available_models)})"
        
        # Use CSS classes instead of Gradio visibility
        css_classes = ["model-list"]
        if new_visible:
            css_classes.append("model-list-visible")
        else:
            css_classes.append("model-list-hidden")
            
        return gr.update(value=button_text), gr.update(elem_classes=css_classes), new_visible

    # Track model list visibility state
    model_list_visible = gr.State(False)

    model_toggle_button.click(
        fn=toggle_model_list,
        inputs=[model_list_visible],
        outputs=[model_toggle_button, model_list_container, model_list_visible]
    )

    # Date toggle functionality
    def toggle_date_selection(current_visible):
        """Toggle the visibility of the date selection."""
        new_visible = not current_visible
        arrow = "β–Ό" if new_visible else "β–Ί"
        button_text = f"{arrow} Date Selection"
        
        # Use CSS classes instead of Gradio visibility
        css_classes = ["date-selection"]
        if new_visible:
            css_classes.append("date-selection-visible")
        else:
            css_classes.append("date-selection-hidden")
            
        return gr.update(value=button_text), gr.update(elem_classes=css_classes), new_visible

    # Track date selection visibility state
    date_selection_visible = gr.State(False)

    date_toggle_button.click(
        fn=toggle_date_selection,
        inputs=[date_selection_visible],
        outputs=[date_toggle_button, date_selection, date_selection_visible]
    )

    # Summary button click handler
    def show_summary_and_update_links():
        """Show summary page and update CI links."""
        return create_summary_page(Ci_results.df, Ci_results.available_models), get_description_text(), get_ci_links()

    summary_button.click(
        fn=show_summary_and_update_links,
        outputs=[summary_display, description_display, ci_links_display]
    ).then(
        fn=lambda: [gr.update(visible=True), gr.update(visible=False)],
        outputs=[summary_display, detail_view]
    )

    # Function to get CI job links
    def get_ci_links():
        """Get CI job links from the most recent data."""
        try:
            # Check if df exists and is not empty
            if Ci_results.df is None or Ci_results.df.empty:
                return "πŸ”— **CI Jobs:** *Loading...*"

            # Get links from any available model (they should be the same for all models in a run)
            amd_multi_link = None
            amd_single_link = None
            nvidia_multi_link = None
            nvidia_single_link = None

            for model_name in Ci_results.df.index:
                row = Ci_results.df.loc[model_name]

                # Extract AMD links
                if pd.notna(row.get('job_link_amd')) and (not amd_multi_link or not amd_single_link):
                    amd_link_raw = row.get('job_link_amd')
                    if isinstance(amd_link_raw, dict):
                        if 'multi' in amd_link_raw and not amd_multi_link:
                            amd_multi_link = amd_link_raw['multi']
                        if 'single' in amd_link_raw and not amd_single_link:
                            amd_single_link = amd_link_raw['single']

                # Extract NVIDIA links
                if pd.notna(row.get('job_link_nvidia')) and (not nvidia_multi_link or not nvidia_single_link):
                    nvidia_link_raw = row.get('job_link_nvidia')
                    if isinstance(nvidia_link_raw, dict):
                        if 'multi' in nvidia_link_raw and not nvidia_multi_link:
                            nvidia_multi_link = nvidia_link_raw['multi']
                        if 'single' in nvidia_link_raw and not nvidia_single_link:
                            nvidia_single_link = nvidia_link_raw['single']

                # Break if we have all links
                if amd_multi_link and amd_single_link and nvidia_multi_link and nvidia_single_link:
                    break


            # Add FAQ link at the bottom
            links_md = "❓ [**FAQ**](https://huggingface.co/spaces/transformers-community/transformers-ci-dashboard/blob/main/README.md)\n\n"
            links_md += "πŸ”— **CI Jobs:**\n\n"

            # AMD links
            if amd_multi_link or amd_single_link:
                links_md += "**AMD:**\n"
                if amd_multi_link:
                    links_md += f"β€’ [Multi GPU]({amd_multi_link})\n"
                if amd_single_link:
                    links_md += f"β€’ [Single GPU]({amd_single_link})\n"
                links_md += "\n"

            # NVIDIA links
            if nvidia_multi_link or nvidia_single_link:
                links_md += "**NVIDIA:**\n"
                if nvidia_multi_link:
                    links_md += f"β€’ [Multi GPU]({nvidia_multi_link})\n"
                if nvidia_single_link:
                    links_md += f"β€’ [Single GPU]({nvidia_single_link})\n"

            if not (amd_multi_link or amd_single_link or nvidia_multi_link or nvidia_single_link):
                links_md += "*No links available*"

            return links_md
        except Exception as e:
            logger.error(f"getting CI links: {e}")
            return "πŸ”— **CI Jobs:** *Error loading links*\n\n❓ **[FAQ](README.md)**"


    # View toggle functionality
    def toggle_to_current_view():
        """Switch to current view."""
        return [
            gr.update(visible=True),   # current_view
            gr.update(visible=False),  # historical_view
            gr.update(visible=False),  # date_toggle_button
            gr.update(visible=True),   # summary_button
            gr.update(variant="primary", elem_classes=["view-toggle-button", "view-toggle-active"]),  # current_view_button
            gr.update(variant="secondary", elem_classes=["view-toggle-button"])  # historical_view_button
        ]

    def toggle_to_historical_view():
        """Switch to historical view first, then auto-load data."""
        # First, just switch the view
        return [
            gr.update(visible=False),  # current_view
            gr.update(visible=True),   # historical_view
            gr.update(visible=True),   # date_toggle_button
            gr.update(visible=False),  # summary_button
            gr.update(variant="secondary", elem_classes=["view-toggle-button"]),  # current_view_button
            gr.update(variant="primary", elem_classes=["view-toggle-button", "view-toggle-active"]),  # historical_view_button
            gr.update(),  # time_series_failure_rates
            gr.update(),  # time_series_amd_tests
            gr.update(),  # time_series_nvidia_tests
        ]

    def auto_load_historical_data():
        """Auto-load data for preselected dates after view switch."""
        # Get the preselected dates
        start_date_val = Ci_results.available_dates[-1] if Ci_results.available_dates else None
        end_date_val = Ci_results.available_dates[0] if Ci_results.available_dates else None
        
        # Check if we already have data for these dates
        if (hasattr(Ci_results, 'cached_start_date') and hasattr(Ci_results, 'cached_end_date') and
            Ci_results.cached_start_date == start_date_val and Ci_results.cached_end_date == end_date_val and
            not Ci_results.historical_df.empty):
            # Use cached data - no loading indicator needed
            plots = create_time_series_summary_gradio(Ci_results.historical_df)
            return plots['failure_rates'], plots['amd_tests'], plots['nvidia_tests']
        
        # Auto-load historical data if dates are available
        if start_date_val and end_date_val:
            try:
                Ci_results.load_historical_data(start_date_val, end_date_val)
                
                if not Ci_results.historical_df.empty:
                    # Cache the loaded data
                    Ci_results.cached_start_date = start_date_val
                    Ci_results.cached_end_date = end_date_val
                    
                    plots = create_time_series_summary_gradio(Ci_results.historical_df)
                    return plots['failure_rates'], plots['amd_tests'], plots['nvidia_tests']
                else:
                    return gr.update(), gr.update(), gr.update()
            except Exception as e:
                logger.error(f"Error auto-loading historical data: {e}")
                return gr.update(), gr.update(), gr.update()
        else:
            return gr.update(), gr.update(), gr.update()

    current_view_button.click(
        fn=toggle_to_current_view,
        outputs=[current_view, historical_view, date_toggle_button, summary_button, current_view_button, historical_view_button]
    )

    historical_view_button.click(
        fn=toggle_to_historical_view,
        outputs=[current_view, historical_view, date_toggle_button, summary_button, current_view_button, historical_view_button, time_series_failure_rates, time_series_amd_tests, time_series_nvidia_tests]
    ).then(
        fn=auto_load_historical_data,
        outputs=[time_series_failure_rates, time_series_amd_tests, time_series_nvidia_tests]
    )

    # Historical data loading functionality
    def load_historical_data(start_date, end_date):
        """Load and display historical data."""
        if not start_date or not end_date:
            logger.error("No start or end date provided")
            return gr.update(), gr.update(), gr.update()
        
        try:
            Ci_results.load_historical_data(start_date, end_date)
            
            if Ci_results.historical_df.empty:
                logger.error("No historical data found for the selected date range")
                return gr.update(), gr.update(), gr.update()
            
            # Create time-series summary plots
            plots = create_time_series_summary_gradio(Ci_results.historical_df)
            
            # Cache the loaded data
            Ci_results.cached_start_date = start_date
            Ci_results.cached_end_date = end_date
            
            return plots['failure_rates'], plots['amd_tests'], plots['nvidia_tests']
            
        except Exception as e:
            logger.error(f"Error loading historical data: {e}")
            return gr.update(), gr.update(), gr.update()

    load_historical_button.click(
        fn=load_historical_data,
        inputs=[start_date, end_date],
        outputs=[time_series_failure_rates, time_series_amd_tests, time_series_nvidia_tests]
    )

    # Time-series model selection functionality
    def show_time_series_model(selected_model):
        """Show time-series view for a specific model."""
        if Ci_results.historical_df.empty:
            return gr.update(), gr.update()
        
        try:
            plots = create_model_time_series_gradio(Ci_results.historical_df, selected_model)
            return plots['amd_plot'], plots['nvidia_plot']
        except Exception as e:
            logger.error(f"Error creating time-series for model {selected_model}: {e}")
            return gr.update(), gr.update()

    # Back button functionality
    def back_to_summary():
        """Return from model time-series view to summary time-series view."""
        return [
            gr.update(visible=True),   # time_series_failure_rates
            gr.update(visible=True),   # time_series_amd_tests
            gr.update(visible=True),   # time_series_nvidia_tests
            gr.update(visible=False)   # time_series_detail_view
        ]

    back_to_summary_button.click(
        fn=back_to_summary,
        outputs=[time_series_failure_rates, time_series_amd_tests, time_series_nvidia_tests, time_series_detail_view]
    )

    # Back button functionality for current view
    def back_to_summary_current():
        """Return from model detail view to summary view in current view."""
        return [
            gr.update(visible=True),   # summary_display
            gr.update(visible=False)   # detail_view
        ]

    back_to_summary_current_button.click(
        fn=back_to_summary_current,
        outputs=[summary_display, detail_view]
    )

    # Update model button handlers to work with both views
    for i, btn in enumerate(model_buttons):
        model_name = model_choices[i]
        
        # Current view handler (existing functionality)
        btn.click(
            fn=lambda selected_model=model_name: plot_model_stats(Ci_results.df, selected_model),
            outputs=[plot_output, amd_failed_tests_output, nvidia_failed_tests_output]
        ).then(
            fn=lambda: [gr.update(visible=False), gr.update(visible=True)],
            outputs=[summary_display, detail_view]
        )
        
        # Historical view handler (new functionality)
        btn.click(
            fn=lambda selected_model=model_name: show_time_series_model(selected_model),
            outputs=[time_series_amd_model_plot, time_series_nvidia_model_plot]
        ).then(
            fn=lambda: [gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=True)],
            outputs=[time_series_failure_rates, time_series_amd_tests, time_series_nvidia_tests, time_series_detail_view]
        )

    # Auto-update CI links when the interface loads
    demo.load(
        fn=get_ci_links,
        outputs=[ci_links_display]
    )


# Gradio entrypoint
if __name__ == "__main__":
    demo.launch()