use plotly
Browse files- app.py +5 -50
- requirements.txt +1 -0
- styles.css +30 -84
- time_series_gradio.py +221 -69
app.py
CHANGED
|
@@ -367,76 +367,31 @@ with gr.Blocks(title="Model Test Results Dashboard", css=load_css(), js=js_func)
|
|
| 367 |
|
| 368 |
|
| 369 |
# Time-series summary displays (multiple Gradio plots)
|
| 370 |
-
time_series_failure_rates = gr.
|
| 371 |
label="",
|
| 372 |
-
x="date",
|
| 373 |
-
y="failure_rate",
|
| 374 |
-
color="platform",
|
| 375 |
-
color_map={"AMD": "#FF6B6B", "NVIDIA": "#76B900"},
|
| 376 |
-
title="Overall Failure Rates Over Time",
|
| 377 |
-
tooltip=["failure_rate", "date", "change"],
|
| 378 |
-
height=300,
|
| 379 |
-
x_label_angle=45,
|
| 380 |
-
y_title="Failure Rate (%)",
|
| 381 |
elem_classes=["plot-container"]
|
| 382 |
)
|
| 383 |
|
| 384 |
-
time_series_amd_tests = gr.
|
| 385 |
label="",
|
| 386 |
-
x="date",
|
| 387 |
-
y="count",
|
| 388 |
-
color="test_type",
|
| 389 |
-
color_map={"Passed": "#4CAF50", "Failed": "#E53E3E", "Skipped": "#FFA500"},
|
| 390 |
-
title="AMD Test Results Over Time",
|
| 391 |
-
tooltip=["count", "date", "change"],
|
| 392 |
-
height=300,
|
| 393 |
-
x_label_angle=45,
|
| 394 |
-
y_title="Number of Tests",
|
| 395 |
elem_classes=["plot-container"]
|
| 396 |
)
|
| 397 |
|
| 398 |
-
time_series_nvidia_tests = gr.
|
| 399 |
label="",
|
| 400 |
-
x="date",
|
| 401 |
-
y="count",
|
| 402 |
-
color="test_type",
|
| 403 |
-
color_map={"Passed": "#4CAF50", "Failed": "#E53E3E", "Skipped": "#FFA500"},
|
| 404 |
-
title="NVIDIA Test Results Over Time",
|
| 405 |
-
tooltip=["count", "date", "change"],
|
| 406 |
-
height=300,
|
| 407 |
-
x_label_angle=45,
|
| 408 |
-
y_title="Number of Tests",
|
| 409 |
elem_classes=["plot-container"]
|
| 410 |
)
|
| 411 |
|
| 412 |
# Time-series model view (hidden by default)
|
| 413 |
with gr.Column(visible=False, elem_classes=["time-series-detail-view"]) as time_series_detail_view:
|
| 414 |
# Time-series plots for specific model (with spacing)
|
| 415 |
-
time_series_amd_model_plot = gr.
|
| 416 |
label="",
|
| 417 |
-
x="date",
|
| 418 |
-
y="count",
|
| 419 |
-
color="test_type",
|
| 420 |
-
color_map={"Passed": "#4CAF50", "Failed": "#E53E3E", "Skipped": "#FFA500"},
|
| 421 |
-
title="AMD Results Over Time",
|
| 422 |
-
tooltip=["count", "date", "change"],
|
| 423 |
-
height=300,
|
| 424 |
-
x_label_angle=45,
|
| 425 |
-
y_title="Number of Tests",
|
| 426 |
elem_classes=["plot-container"]
|
| 427 |
)
|
| 428 |
|
| 429 |
-
time_series_nvidia_model_plot = gr.
|
| 430 |
label="",
|
| 431 |
-
x="date",
|
| 432 |
-
y="count",
|
| 433 |
-
color="test_type",
|
| 434 |
-
color_map={"Passed": "#4CAF50", "Failed": "#E53E3E", "Skipped": "#FFA500"},
|
| 435 |
-
title="NVIDIA Results Over Time",
|
| 436 |
-
tooltip=["count", "date", "change"],
|
| 437 |
-
height=300,
|
| 438 |
-
x_label_angle=45,
|
| 439 |
-
y_title="Number of Tests",
|
| 440 |
elem_classes=["plot-container"]
|
| 441 |
)
|
| 442 |
|
|
|
|
| 367 |
|
| 368 |
|
| 369 |
# Time-series summary displays (multiple Gradio plots)
|
| 370 |
+
time_series_failure_rates = gr.Plot(
|
| 371 |
label="",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 372 |
elem_classes=["plot-container"]
|
| 373 |
)
|
| 374 |
|
| 375 |
+
time_series_amd_tests = gr.Plot(
|
| 376 |
label="",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 377 |
elem_classes=["plot-container"]
|
| 378 |
)
|
| 379 |
|
| 380 |
+
time_series_nvidia_tests = gr.Plot(
|
| 381 |
label="",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 382 |
elem_classes=["plot-container"]
|
| 383 |
)
|
| 384 |
|
| 385 |
# Time-series model view (hidden by default)
|
| 386 |
with gr.Column(visible=False, elem_classes=["time-series-detail-view"]) as time_series_detail_view:
|
| 387 |
# Time-series plots for specific model (with spacing)
|
| 388 |
+
time_series_amd_model_plot = gr.Plot(
|
| 389 |
label="",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 390 |
elem_classes=["plot-container"]
|
| 391 |
)
|
| 392 |
|
| 393 |
+
time_series_nvidia_model_plot = gr.Plot(
|
| 394 |
label="",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 395 |
elem_classes=["plot-container"]
|
| 396 |
)
|
| 397 |
|
requirements.txt
CHANGED
|
@@ -1,2 +1,3 @@
|
|
| 1 |
matplotlib>=3.8
|
| 2 |
gradio_toggle
|
|
|
|
|
|
| 1 |
matplotlib>=3.8
|
| 2 |
gradio_toggle
|
| 3 |
+
plotly>=5.0
|
styles.css
CHANGED
|
@@ -960,102 +960,48 @@ h1, h2, h3, p, .markdown {
|
|
| 960 |
padding: 30px 20px !important;
|
| 961 |
}
|
| 962 |
|
| 963 |
-
/*
|
| 964 |
-
.historical-view .plot-container
|
| 965 |
-
.time-series-detail-view .plot-container
|
| 966 |
-
|
| 967 |
-
}
|
| 968 |
-
|
| 969 |
-
/* Historical view title styling */
|
| 970 |
-
.historical-view .plot-container svg text[class*="title"],
|
| 971 |
-
.time-series-detail-view .plot-container svg text[class*="title"],
|
| 972 |
-
.historical-view .plot-container svg g[class*="title"] text,
|
| 973 |
-
.time-series-detail-view .plot-container svg g[class*="title"] text {
|
| 974 |
-
font-size: 22px !important;
|
| 975 |
-
font-weight: 600 !important;
|
| 976 |
}
|
| 977 |
|
| 978 |
-
/*
|
| 979 |
-
.historical-view .plot
|
| 980 |
-
.
|
| 981 |
-
|
| 982 |
-
.time-series-detail-view .plot-container svg g[class*="ytitle"] text,
|
| 983 |
-
.historical-view .plot-container svg .xtitle text,
|
| 984 |
-
.historical-view .plot-container svg .ytitle text,
|
| 985 |
-
.time-series-detail-view .plot-container svg .xtitle text,
|
| 986 |
-
.time-series-detail-view .plot-container svg .ytitle text {
|
| 987 |
-
font-size: 18px !important;
|
| 988 |
-
font-weight: 500 !important;
|
| 989 |
}
|
| 990 |
|
| 991 |
-
/*
|
| 992 |
-
.historical-view .plot
|
| 993 |
-
.time-series-detail-view .plot
|
| 994 |
-
.historical-view .plot-container svg .xaxis text,
|
| 995 |
-
.historical-view .plot-container svg .yaxis text,
|
| 996 |
-
.time-series-detail-view .plot-container svg .xaxis text,
|
| 997 |
-
.time-series-detail-view .plot-container svg .yaxis text {
|
| 998 |
font-size: 16px !important;
|
|
|
|
| 999 |
}
|
| 1000 |
|
| 1001 |
-
/*
|
| 1002 |
-
.historical-view .plot
|
| 1003 |
-
.
|
| 1004 |
-
.
|
| 1005 |
-
.time-series-detail-view .plot
|
| 1006 |
-
.historical-view .plot-container svg g.legend text,
|
| 1007 |
-
.time-series-detail-view .plot-container svg g.legend text,
|
| 1008 |
-
.historical-view .plot-container svg text.legend,
|
| 1009 |
-
.time-series-detail-view .plot-container svg text.legend {
|
| 1010 |
-
font-size: 18px !important;
|
| 1011 |
-
font-weight: 500 !important;
|
| 1012 |
-
}
|
| 1013 |
-
|
| 1014 |
-
/* Target all plotly/gradio plot text elements */
|
| 1015 |
-
.historical-view .plot-container .js-plotly-plot text,
|
| 1016 |
-
.time-series-detail-view .plot-container .js-plotly-plot text {
|
| 1017 |
font-size: 16px !important;
|
|
|
|
| 1018 |
}
|
| 1019 |
|
| 1020 |
-
|
| 1021 |
-
.
|
| 1022 |
-
|
| 1023 |
-
|
| 1024 |
-
|
| 1025 |
-
|
| 1026 |
-
|
| 1027 |
-
.time-series-detail-view .vega-embed text,
|
| 1028 |
-
.historical-view .mark-text text,
|
| 1029 |
-
.time-series-detail-view .mark-text text {
|
| 1030 |
-
font-size: 18px !important;
|
| 1031 |
-
}
|
| 1032 |
-
|
| 1033 |
-
/* Vega-Lite legend text */
|
| 1034 |
-
.historical-view .vega-embed .role-legend-label,
|
| 1035 |
-
.time-series-detail-view .vega-embed .role-legend-label,
|
| 1036 |
-
.historical-view .vega-embed g[aria-label*="legend"] text,
|
| 1037 |
-
.time-series-detail-view .vega-embed g[aria-label*="legend"] text {
|
| 1038 |
-
font-size: 18px !important;
|
| 1039 |
-
font-weight: 500 !important;
|
| 1040 |
-
}
|
| 1041 |
-
|
| 1042 |
-
/* Vega-Lite axis titles */
|
| 1043 |
-
.historical-view .vega-embed .role-axis-title,
|
| 1044 |
-
.time-series-detail-view .vega-embed .role-axis-title {
|
| 1045 |
-
font-size: 18px !important;
|
| 1046 |
-
font-weight: 500 !important;
|
| 1047 |
-
}
|
| 1048 |
-
|
| 1049 |
-
/* Vega-Lite axis labels */
|
| 1050 |
-
.historical-view .vega-embed .role-axis-label,
|
| 1051 |
-
.time-series-detail-view .vega-embed .role-axis-label {
|
| 1052 |
-
font-size: 16px !important;
|
| 1053 |
}
|
| 1054 |
|
| 1055 |
-
/*
|
| 1056 |
-
.historical-view .
|
| 1057 |
-
.time-series-detail-view .
|
| 1058 |
-
font-size:
|
|
|
|
| 1059 |
font-weight: 600 !important;
|
| 1060 |
}
|
| 1061 |
|
|
|
|
| 960 |
padding: 30px 20px !important;
|
| 961 |
}
|
| 962 |
|
| 963 |
+
/* Plotly chart styling for historical view */
|
| 964 |
+
.historical-view .plot-container,
|
| 965 |
+
.time-series-detail-view .plot-container {
|
| 966 |
+
background-color: #000000 !important;
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 967 |
}
|
| 968 |
|
| 969 |
+
/* Plotly specific text styling */
|
| 970 |
+
.historical-view .js-plotly-plot .plotly,
|
| 971 |
+
.time-series-detail-view .js-plotly-plot .plotly {
|
| 972 |
+
background-color: #000000 !important;
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 973 |
}
|
| 974 |
|
| 975 |
+
/* Plotly legend text */
|
| 976 |
+
.historical-view .js-plotly-plot .legend text,
|
| 977 |
+
.time-series-detail-view .js-plotly-plot .legend text {
|
|
|
|
|
|
|
|
|
|
|
|
|
| 978 |
font-size: 16px !important;
|
| 979 |
+
fill: #CCCCCC !important;
|
| 980 |
}
|
| 981 |
|
| 982 |
+
/* Plotly axis titles */
|
| 983 |
+
.historical-view .js-plotly-plot .g-xtitle text,
|
| 984 |
+
.historical-view .js-plotly-plot .g-ytitle text,
|
| 985 |
+
.time-series-detail-view .js-plotly-plot .g-xtitle text,
|
| 986 |
+
.time-series-detail-view .js-plotly-plot .g-ytitle text {
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 987 |
font-size: 16px !important;
|
| 988 |
+
fill: #CCCCCC !important;
|
| 989 |
}
|
| 990 |
|
| 991 |
+
/* Plotly axis tick labels */
|
| 992 |
+
.historical-view .js-plotly-plot .xtick text,
|
| 993 |
+
.historical-view .js-plotly-plot .ytick text,
|
| 994 |
+
.time-series-detail-view .js-plotly-plot .xtick text,
|
| 995 |
+
.time-series-detail-view .js-plotly-plot .ytick text {
|
| 996 |
+
font-size: 14px !important;
|
| 997 |
+
fill: #CCCCCC !important;
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 998 |
}
|
| 999 |
|
| 1000 |
+
/* Plotly title */
|
| 1001 |
+
.historical-view .js-plotly-plot .g-gtitle text,
|
| 1002 |
+
.time-series-detail-view .js-plotly-plot .g-gtitle text {
|
| 1003 |
+
font-size: 20px !important;
|
| 1004 |
+
fill: #FFFFFF !important;
|
| 1005 |
font-weight: 600 !important;
|
| 1006 |
}
|
| 1007 |
|
time_series_gradio.py
CHANGED
|
@@ -3,6 +3,8 @@ import numpy as np
|
|
| 3 |
from datetime import datetime
|
| 4 |
from data import extract_model_data
|
| 5 |
import gradio as gr
|
|
|
|
|
|
|
| 6 |
|
| 7 |
COLORS = {
|
| 8 |
'passed': '#4CAF50',
|
|
@@ -128,11 +130,19 @@ def get_model_time_series_dfs(historical_df: pd.DataFrame, model_name: str) -> d
|
|
| 128 |
|
| 129 |
def create_time_series_summary_gradio(historical_df: pd.DataFrame) -> dict:
|
| 130 |
if historical_df.empty or 'date' not in historical_df.columns:
|
| 131 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 132 |
return {
|
| 133 |
-
'failure_rates': gr.
|
| 134 |
-
'amd_tests': gr.
|
| 135 |
-
'nvidia_tests': gr.
|
| 136 |
}
|
| 137 |
|
| 138 |
daily_stats = []
|
|
@@ -211,61 +221,159 @@ def create_time_series_summary_gradio(historical_df: pd.DataFrame) -> dict:
|
|
| 211 |
|
| 212 |
nvidia_df = pd.DataFrame(nvidia_data)
|
| 213 |
|
| 214 |
-
|
| 215 |
-
|
| 216 |
-
|
| 217 |
-
|
| 218 |
-
|
| 219 |
-
|
| 220 |
-
|
| 221 |
-
|
| 222 |
-
|
| 223 |
-
|
| 224 |
-
|
| 225 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 226 |
),
|
| 227 |
-
|
| 228 |
-
|
| 229 |
-
|
| 230 |
-
|
| 231 |
-
|
| 232 |
-
color_map={"Passed": COLORS['passed'], "Failed": COLORS['failed'], "Skipped": COLORS['skipped']},
|
| 233 |
-
title="AMD Test Results Over Time",
|
| 234 |
-
tooltip=["count", "date", "change"],
|
| 235 |
-
height=400,
|
| 236 |
-
x_label_angle=45,
|
| 237 |
-
y_title="Number of Tests"
|
| 238 |
),
|
| 239 |
-
'
|
| 240 |
-
|
| 241 |
-
|
| 242 |
-
|
| 243 |
-
|
| 244 |
-
|
| 245 |
-
|
| 246 |
-
|
| 247 |
-
|
| 248 |
-
|
| 249 |
-
|
| 250 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 251 |
}
|
| 252 |
|
| 253 |
|
| 254 |
def create_model_time_series_gradio(historical_df: pd.DataFrame, model_name: str) -> dict:
|
| 255 |
if historical_df.empty or 'date' not in historical_df.columns:
|
| 256 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 257 |
return {
|
| 258 |
-
'amd_plot': gr.
|
| 259 |
-
'nvidia_plot': gr.
|
| 260 |
}
|
| 261 |
|
| 262 |
model_data = historical_df[historical_df.index.str.lower() == model_name.lower()]
|
| 263 |
|
| 264 |
if model_data.empty:
|
| 265 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 266 |
return {
|
| 267 |
-
'amd_plot': gr.
|
| 268 |
-
'nvidia_plot': gr.
|
| 269 |
}
|
| 270 |
|
| 271 |
dates = sorted(model_data['date'].unique())
|
|
@@ -328,29 +436,73 @@ def create_model_time_series_gradio(historical_df: pd.DataFrame, model_name: str
|
|
| 328 |
amd_df = pd.DataFrame(amd_data)
|
| 329 |
nvidia_df = pd.DataFrame(nvidia_data)
|
| 330 |
|
| 331 |
-
|
| 332 |
-
|
| 333 |
-
|
| 334 |
-
|
| 335 |
-
|
| 336 |
-
|
| 337 |
-
|
| 338 |
-
|
| 339 |
-
|
| 340 |
-
|
| 341 |
-
|
| 342 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 343 |
),
|
| 344 |
-
|
| 345 |
-
|
| 346 |
-
|
| 347 |
-
|
| 348 |
-
|
| 349 |
-
|
| 350 |
-
|
| 351 |
-
|
| 352 |
-
|
| 353 |
-
|
| 354 |
-
|
| 355 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 356 |
}
|
|
|
|
| 3 |
from datetime import datetime
|
| 4 |
from data import extract_model_data
|
| 5 |
import gradio as gr
|
| 6 |
+
import plotly.express as px
|
| 7 |
+
import plotly.graph_objects as go
|
| 8 |
|
| 9 |
COLORS = {
|
| 10 |
'passed': '#4CAF50',
|
|
|
|
| 130 |
|
| 131 |
def create_time_series_summary_gradio(historical_df: pd.DataFrame) -> dict:
|
| 132 |
if historical_df.empty or 'date' not in historical_df.columns:
|
| 133 |
+
# Create empty Plotly figure
|
| 134 |
+
empty_fig = go.Figure()
|
| 135 |
+
empty_fig.update_layout(
|
| 136 |
+
title="No historical data available",
|
| 137 |
+
height=400,
|
| 138 |
+
font=dict(size=16, color='#CCCCCC'),
|
| 139 |
+
paper_bgcolor='#000000',
|
| 140 |
+
plot_bgcolor='#1a1a1a',
|
| 141 |
+
)
|
| 142 |
return {
|
| 143 |
+
'failure_rates': gr.Plot(value=empty_fig),
|
| 144 |
+
'amd_tests': gr.Plot(value=empty_fig),
|
| 145 |
+
'nvidia_tests': gr.Plot(value=empty_fig)
|
| 146 |
}
|
| 147 |
|
| 148 |
daily_stats = []
|
|
|
|
| 221 |
|
| 222 |
nvidia_df = pd.DataFrame(nvidia_data)
|
| 223 |
|
| 224 |
+
# Create Plotly figure for failure rates
|
| 225 |
+
fig_failure_rates = px.line(
|
| 226 |
+
failure_rate_df,
|
| 227 |
+
x='date',
|
| 228 |
+
y='failure_rate',
|
| 229 |
+
color='platform',
|
| 230 |
+
color_discrete_map={"AMD": COLORS['amd'], "NVIDIA": COLORS['nvidia']},
|
| 231 |
+
title="Overall Failure Rates Over Time",
|
| 232 |
+
labels={'failure_rate': 'Failure Rate (%)', 'date': 'Date', 'platform': 'Platform'}
|
| 233 |
+
)
|
| 234 |
+
fig_failure_rates.update_traces(mode='lines+markers', hovertemplate='%{y:.2f}%<br>%{x}<extra></extra>')
|
| 235 |
+
fig_failure_rates.update_layout(
|
| 236 |
+
height=400,
|
| 237 |
+
font=dict(size=16, color='#CCCCCC'),
|
| 238 |
+
paper_bgcolor='#000000',
|
| 239 |
+
plot_bgcolor='#1a1a1a',
|
| 240 |
+
title_font_size=20,
|
| 241 |
+
legend=dict(font=dict(size=16), bgcolor='rgba(0,0,0,0.5)'),
|
| 242 |
+
xaxis=dict(
|
| 243 |
+
title_font_size=16,
|
| 244 |
+
tickfont_size=14,
|
| 245 |
+
gridcolor='#333333',
|
| 246 |
+
showgrid=True
|
| 247 |
),
|
| 248 |
+
yaxis=dict(
|
| 249 |
+
title_font_size=16,
|
| 250 |
+
tickfont_size=14,
|
| 251 |
+
gridcolor='#333333',
|
| 252 |
+
showgrid=True
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 253 |
),
|
| 254 |
+
hovermode='x unified'
|
| 255 |
+
)
|
| 256 |
+
|
| 257 |
+
# Create Plotly figure for AMD tests
|
| 258 |
+
fig_amd = px.line(
|
| 259 |
+
amd_df,
|
| 260 |
+
x='date',
|
| 261 |
+
y='count',
|
| 262 |
+
color='test_type',
|
| 263 |
+
color_discrete_map={"Passed": COLORS['passed'], "Failed": COLORS['failed'], "Skipped": COLORS['skipped']},
|
| 264 |
+
title="AMD Test Results Over Time",
|
| 265 |
+
labels={'count': 'Number of Tests', 'date': 'Date', 'test_type': 'Test Type'}
|
| 266 |
+
)
|
| 267 |
+
fig_amd.update_traces(mode='lines+markers', hovertemplate='%{y}<br>%{x}<extra></extra>')
|
| 268 |
+
fig_amd.update_layout(
|
| 269 |
+
height=400,
|
| 270 |
+
font=dict(size=16, color='#CCCCCC'),
|
| 271 |
+
paper_bgcolor='#000000',
|
| 272 |
+
plot_bgcolor='#1a1a1a',
|
| 273 |
+
title_font_size=20,
|
| 274 |
+
legend=dict(font=dict(size=16), bgcolor='rgba(0,0,0,0.5)'),
|
| 275 |
+
xaxis=dict(
|
| 276 |
+
title_font_size=16,
|
| 277 |
+
tickfont_size=14,
|
| 278 |
+
gridcolor='#333333',
|
| 279 |
+
showgrid=True
|
| 280 |
+
),
|
| 281 |
+
yaxis=dict(
|
| 282 |
+
title_font_size=16,
|
| 283 |
+
tickfont_size=14,
|
| 284 |
+
gridcolor='#333333',
|
| 285 |
+
showgrid=True
|
| 286 |
+
),
|
| 287 |
+
hovermode='x unified'
|
| 288 |
+
)
|
| 289 |
+
|
| 290 |
+
# Create Plotly figure for NVIDIA tests
|
| 291 |
+
fig_nvidia = px.line(
|
| 292 |
+
nvidia_df,
|
| 293 |
+
x='date',
|
| 294 |
+
y='count',
|
| 295 |
+
color='test_type',
|
| 296 |
+
color_discrete_map={"Passed": COLORS['passed'], "Failed": COLORS['failed'], "Skipped": COLORS['skipped']},
|
| 297 |
+
title="NVIDIA Test Results Over Time",
|
| 298 |
+
labels={'count': 'Number of Tests', 'date': 'Date', 'test_type': 'Test Type'}
|
| 299 |
+
)
|
| 300 |
+
fig_nvidia.update_traces(mode='lines+markers', hovertemplate='%{y}<br>%{x}<extra></extra>')
|
| 301 |
+
fig_nvidia.update_layout(
|
| 302 |
+
height=400,
|
| 303 |
+
font=dict(size=16, color='#CCCCCC'),
|
| 304 |
+
paper_bgcolor='#000000',
|
| 305 |
+
plot_bgcolor='#1a1a1a',
|
| 306 |
+
title_font_size=20,
|
| 307 |
+
legend=dict(font=dict(size=16), bgcolor='rgba(0,0,0,0.5)'),
|
| 308 |
+
xaxis=dict(
|
| 309 |
+
title_font_size=16,
|
| 310 |
+
tickfont_size=14,
|
| 311 |
+
gridcolor='#333333',
|
| 312 |
+
showgrid=True
|
| 313 |
+
),
|
| 314 |
+
yaxis=dict(
|
| 315 |
+
title_font_size=16,
|
| 316 |
+
tickfont_size=14,
|
| 317 |
+
gridcolor='#333333',
|
| 318 |
+
showgrid=True
|
| 319 |
+
),
|
| 320 |
+
hovermode='x unified'
|
| 321 |
+
)
|
| 322 |
+
|
| 323 |
+
return {
|
| 324 |
+
'failure_rates': gr.Plot(value=fig_failure_rates),
|
| 325 |
+
'amd_tests': gr.Plot(value=fig_amd),
|
| 326 |
+
'nvidia_tests': gr.Plot(value=fig_nvidia)
|
| 327 |
}
|
| 328 |
|
| 329 |
|
| 330 |
def create_model_time_series_gradio(historical_df: pd.DataFrame, model_name: str) -> dict:
|
| 331 |
if historical_df.empty or 'date' not in historical_df.columns:
|
| 332 |
+
# Create empty Plotly figures
|
| 333 |
+
empty_fig_amd = go.Figure()
|
| 334 |
+
empty_fig_amd.update_layout(
|
| 335 |
+
title=f"{model_name.upper()} - AMD Results Over Time",
|
| 336 |
+
height=400,
|
| 337 |
+
font=dict(size=16, color='#CCCCCC'),
|
| 338 |
+
paper_bgcolor='#000000',
|
| 339 |
+
plot_bgcolor='#1a1a1a',
|
| 340 |
+
)
|
| 341 |
+
empty_fig_nvidia = go.Figure()
|
| 342 |
+
empty_fig_nvidia.update_layout(
|
| 343 |
+
title=f"{model_name.upper()} - NVIDIA Results Over Time",
|
| 344 |
+
height=400,
|
| 345 |
+
font=dict(size=16, color='#CCCCCC'),
|
| 346 |
+
paper_bgcolor='#000000',
|
| 347 |
+
plot_bgcolor='#1a1a1a',
|
| 348 |
+
)
|
| 349 |
return {
|
| 350 |
+
'amd_plot': gr.Plot(value=empty_fig_amd),
|
| 351 |
+
'nvidia_plot': gr.Plot(value=empty_fig_nvidia)
|
| 352 |
}
|
| 353 |
|
| 354 |
model_data = historical_df[historical_df.index.str.lower() == model_name.lower()]
|
| 355 |
|
| 356 |
if model_data.empty:
|
| 357 |
+
# Create empty Plotly figures
|
| 358 |
+
empty_fig_amd = go.Figure()
|
| 359 |
+
empty_fig_amd.update_layout(
|
| 360 |
+
title=f"{model_name.upper()} - AMD Results Over Time",
|
| 361 |
+
height=400,
|
| 362 |
+
font=dict(size=16, color='#CCCCCC'),
|
| 363 |
+
paper_bgcolor='#000000',
|
| 364 |
+
plot_bgcolor='#1a1a1a',
|
| 365 |
+
)
|
| 366 |
+
empty_fig_nvidia = go.Figure()
|
| 367 |
+
empty_fig_nvidia.update_layout(
|
| 368 |
+
title=f"{model_name.upper()} - NVIDIA Results Over Time",
|
| 369 |
+
height=400,
|
| 370 |
+
font=dict(size=16, color='#CCCCCC'),
|
| 371 |
+
paper_bgcolor='#000000',
|
| 372 |
+
plot_bgcolor='#1a1a1a',
|
| 373 |
+
)
|
| 374 |
return {
|
| 375 |
+
'amd_plot': gr.Plot(value=empty_fig_amd),
|
| 376 |
+
'nvidia_plot': gr.Plot(value=empty_fig_nvidia)
|
| 377 |
}
|
| 378 |
|
| 379 |
dates = sorted(model_data['date'].unique())
|
|
|
|
| 436 |
amd_df = pd.DataFrame(amd_data)
|
| 437 |
nvidia_df = pd.DataFrame(nvidia_data)
|
| 438 |
|
| 439 |
+
# Create Plotly figure for AMD
|
| 440 |
+
fig_amd = px.line(
|
| 441 |
+
amd_df,
|
| 442 |
+
x='date',
|
| 443 |
+
y='count',
|
| 444 |
+
color='test_type',
|
| 445 |
+
color_discrete_map={"Passed": COLORS['passed'], "Failed": COLORS['failed'], "Skipped": COLORS['skipped']},
|
| 446 |
+
title=f"{model_name.upper()} - AMD Results Over Time",
|
| 447 |
+
labels={'count': 'Number of Tests', 'date': 'Date', 'test_type': 'Test Type'}
|
| 448 |
+
)
|
| 449 |
+
fig_amd.update_traces(mode='lines+markers', hovertemplate='%{y}<br>%{x}<extra></extra>')
|
| 450 |
+
fig_amd.update_layout(
|
| 451 |
+
height=400,
|
| 452 |
+
font=dict(size=16, color='#CCCCCC'),
|
| 453 |
+
paper_bgcolor='#000000',
|
| 454 |
+
plot_bgcolor='#1a1a1a',
|
| 455 |
+
title_font_size=20,
|
| 456 |
+
legend=dict(font=dict(size=16), bgcolor='rgba(0,0,0,0.5)'),
|
| 457 |
+
xaxis=dict(
|
| 458 |
+
title_font_size=16,
|
| 459 |
+
tickfont_size=14,
|
| 460 |
+
gridcolor='#333333',
|
| 461 |
+
showgrid=True
|
| 462 |
),
|
| 463 |
+
yaxis=dict(
|
| 464 |
+
title_font_size=16,
|
| 465 |
+
tickfont_size=14,
|
| 466 |
+
gridcolor='#333333',
|
| 467 |
+
showgrid=True
|
| 468 |
+
),
|
| 469 |
+
hovermode='x unified'
|
| 470 |
+
)
|
| 471 |
+
|
| 472 |
+
# Create Plotly figure for NVIDIA
|
| 473 |
+
fig_nvidia = px.line(
|
| 474 |
+
nvidia_df,
|
| 475 |
+
x='date',
|
| 476 |
+
y='count',
|
| 477 |
+
color='test_type',
|
| 478 |
+
color_discrete_map={"Passed": COLORS['passed'], "Failed": COLORS['failed'], "Skipped": COLORS['skipped']},
|
| 479 |
+
title=f"{model_name.upper()} - NVIDIA Results Over Time",
|
| 480 |
+
labels={'count': 'Number of Tests', 'date': 'Date', 'test_type': 'Test Type'}
|
| 481 |
+
)
|
| 482 |
+
fig_nvidia.update_traces(mode='lines+markers', hovertemplate='%{y}<br>%{x}<extra></extra>')
|
| 483 |
+
fig_nvidia.update_layout(
|
| 484 |
+
height=400,
|
| 485 |
+
font=dict(size=16, color='#CCCCCC'),
|
| 486 |
+
paper_bgcolor='#000000',
|
| 487 |
+
plot_bgcolor='#1a1a1a',
|
| 488 |
+
title_font_size=20,
|
| 489 |
+
legend=dict(font=dict(size=16), bgcolor='rgba(0,0,0,0.5)'),
|
| 490 |
+
xaxis=dict(
|
| 491 |
+
title_font_size=16,
|
| 492 |
+
tickfont_size=14,
|
| 493 |
+
gridcolor='#333333',
|
| 494 |
+
showgrid=True
|
| 495 |
+
),
|
| 496 |
+
yaxis=dict(
|
| 497 |
+
title_font_size=16,
|
| 498 |
+
tickfont_size=14,
|
| 499 |
+
gridcolor='#333333',
|
| 500 |
+
showgrid=True
|
| 501 |
+
),
|
| 502 |
+
hovermode='x unified'
|
| 503 |
+
)
|
| 504 |
+
|
| 505 |
+
return {
|
| 506 |
+
'amd_plot': gr.Plot(value=fig_amd),
|
| 507 |
+
'nvidia_plot': gr.Plot(value=fig_nvidia)
|
| 508 |
}
|