bbbdbbb commited on
Commit
438368f
·
verified ·
1 Parent(s): 3f5fdfa

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +25 -54
app.py CHANGED
@@ -1,64 +1,35 @@
1
- import gradio as gr
2
- from huggingface_hub import InferenceClient
3
-
4
- """
5
- For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
6
- """
7
- client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
8
-
9
 
10
- def respond(
11
- message,
12
- history: list[tuple[str, str]],
13
- system_message,
14
- max_tokens,
15
- temperature,
16
- top_p,
17
- ):
18
- messages = [{"role": "system", "content": system_message}]
19
-
20
- for val in history:
21
- if val[0]:
22
- messages.append({"role": "user", "content": val[0]})
23
- if val[1]:
24
- messages.append({"role": "assistant", "content": val[1]})
25
 
26
- messages.append({"role": "user", "content": message})
 
27
 
28
- response = ""
 
29
 
30
- for message in client.chat_completion(
31
- messages,
32
- max_tokens=max_tokens,
33
- stream=True,
34
- temperature=temperature,
35
- top_p=top_p,
36
- ):
37
- token = message.choices[0].delta.content
38
 
39
- response += token
40
- yield response
 
41
 
 
42
 
43
- """
44
- For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
45
- """
46
- demo = gr.ChatInterface(
47
- respond,
48
- additional_inputs=[
49
- gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
50
- gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
51
- gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
52
- gr.Slider(
53
- minimum=0.1,
54
- maximum=1.0,
55
- value=0.95,
56
- step=0.05,
57
- label="Top-p (nucleus sampling)",
58
- ),
59
- ],
60
  )
61
 
62
-
63
  if __name__ == "__main__":
64
- demo.launch()
 
 
 
 
 
 
 
 
 
1
 
2
+ import pandas as pd
3
+ import matplotlib.pyplot as plt
4
+ import gradio as gr
 
 
 
 
 
 
 
 
 
 
 
 
5
 
6
+ def analyze_csv(file):
7
+ df = pd.read_csv(file.name)
8
 
9
+ # 统计分析
10
+ stats = df.describe().loc[["mean", "std", "min", "max"]].round(2).to_string()
11
 
12
+ # 生成图像:Income vs SpendingScore
13
+ plt.figure(figsize=(6, 4))
14
+ plt.scatter(df["Income"], df["SpendingScore"], alpha=0.7)
15
+ plt.title("Income vs Spending Score")
16
+ plt.xlabel("Income")
17
+ plt.ylabel("Spending Score")
18
+ plt.grid(True)
 
19
 
20
+ img_path = "income_vs_score.png"
21
+ plt.savefig(img_path)
22
+ plt.close()
23
 
24
+ return stats, img_path
25
 
26
+ iface = gr.Interface(
27
+ fn=analyze_csv,
28
+ inputs=gr.File(label="Upload CSV File", file_types=[".csv"]),
29
+ outputs=[gr.Text(label="📊 Statistical Summary"), gr.Image(label="📈 Income vs Spending Score")],
30
+ title="📊 表格分析大模型",
31
+ description="上传一个CSV表格,我将输出统计分析结果并展示一张图表。"
 
 
 
 
 
 
 
 
 
 
 
32
  )
33
 
 
34
  if __name__ == "__main__":
35
+ iface.launch()