File size: 7,771 Bytes
d4d1ca8
 
 
 
 
 
 
 
cc2e1db
d4d1ca8
 
 
 
 
 
cc2e1db
d4d1ca8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cc2e1db
 
d4d1ca8
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
import sys
import os
from pathlib import Path
import pandas as pd
import numpy as np
from typing import Optional

# sklearn imports
from sklearn.model_selection import train_test_split, StratifiedKFold, GridSearchCV
from sklearn.ensemble import RandomForestClassifier, GradientBoostingClassifier
from sklearn.neural_network import MLPClassifier
from sklearn.pipeline import Pipeline
from sklearn.compose import ColumnTransformer
from sklearn.preprocessing import OneHotEncoder, StandardScaler, LabelEncoder
from sklearn.impute import SimpleImputer
from sklearn.metrics import classification_report, confusion_matrix
import joblib

# Optional HF weak-labeling
HF_TOKEN = os.environ.get('HF_TOKEN')

# optional boosters
try:
    import xgboost as xgb
    _has_xgb = True
except Exception:
    _has_xgb = False


def parse_and_features(df: pd.DataFrame) -> pd.DataFrame:
    df = df.copy()
    # parse datetimes
    for c in ['OutageDateTime','FirstRestoDateTime','LastRestoDateTime']:
        if c in df.columns:
            df[c+'_dt'] = pd.to_datetime(df[c], format='%d-%m-%Y %H:%M:%S', errors='coerce')

    # duration
    if 'OutageDateTime_dt' in df.columns and 'LastRestoDateTime_dt' in df.columns:
        df['duration_min'] = (df['LastRestoDateTime_dt'] - df['OutageDateTime_dt']).dt.total_seconds() / 60.0
    else:
        df['duration_min'] = np.nan

    # numeric columns
    for col in ['Load(MW)','Capacity(kVA)','FirstStepDuration','LastStepDuration','AffectedCustomer']:
        if col in df.columns:
            df[col+'_num'] = pd.to_numeric(df[col], errors='coerce')
        else:
            df[col+'_num'] = np.nan

    # time features
    if 'OutageDateTime_dt' in df.columns:
        df['hour'] = df['OutageDateTime_dt'].dt.hour
        df['weekday'] = df['OutageDateTime_dt'].dt.weekday
    else:
        df['hour'] = np.nan
        df['weekday'] = np.nan

    # device frequency
    if 'OpDeviceType' in df.columns:
        freq = df['OpDeviceType'].fillna('NA').value_counts()
        df['device_freq'] = df['OpDeviceType'].map(lambda x: freq.get(x,0))
    else:
        df['device_freq'] = 0

    # small cleanup for categorical
    for c in ['OpDeviceType','Owner','Weather','EventType']:
        if c in df.columns:
            df[c] = df[c].fillna('NA')
        else:
            df[c] = 'NA'

    return df


def weak_label_with_hf(text: str) -> Optional[str]:
    # Use HF router via OpenAI-compatible client to map free-text to a label suggestions
    if not HF_TOKEN or not isinstance(text, str) or not text.strip():
        return None
    try:
        from openai import OpenAI
        client = OpenAI(base_url='https://router.huggingface.co/v1', api_key=HF_TOKEN)
        prompt = f"ให้จัดหมวดสาเหตุของเหตุการณ์ไฟฟ้า ในคำสั้นๆ (ไทย) จากข้อความนี้:\n\n{text}\n\nตอบเป็นคำเดียวหรือวลีสั้นๆ เช่น 'สายขาด' หรือ 'บำรุงรักษา'"
        completion = client.chat.completions.create(
            model='meta-llama/Llama-4-Scout-17B-16E-Instruct:novita',
            messages=[{"role":"user","content":[{"type":"text","text":prompt}]}],
            max_tokens=40,
        )
        choice = completion.choices[0]
        msg = getattr(choice, 'message', None) or (choice.get('message') if isinstance(choice, dict) else None)
        content = None
        if msg:
            content = msg.get('content') if isinstance(msg, dict) else getattr(msg, 'content', None)
            if isinstance(content, list) and content:
                # find text
                for it in content:
                    if isinstance(it, dict) and it.get('type') in ('output_text','text'):
                        return it.get('text').strip()
                return str(content[0]).strip()
        # fallback
        text_out = choice.get('text') if isinstance(choice, dict) else None
        return text_out.strip() if text_out else None
    except Exception:
        return None


def train_classifier(df: pd.DataFrame, label_col: str = 'CauseType', test_size: float = 0.2, random_state: int = 42, min_count_to_keep: int = 2, model_type: str = 'rf', hyperparams: dict = {}):
    df = parse_and_features(df)

    # optionally weak-label rows missing label
    if label_col not in df.columns:
        df[label_col] = None

    if df[label_col].isna().sum() > 0 and HF_TOKEN:
        # attempt weak labeling for missing entries using Detail or FaultDetail
        for idx, row in df[df[label_col].isna()].iterrows():
            text = None
            for f in ['Detail','FaultDetail','SiteDetail']:
                if f in df.columns and pd.notna(row.get(f)):
                    text = row.get(f)
                    break
            if text:
                try:
                    lbl = weak_label_with_hf(text)
                    if lbl:
                        df.at[idx, label_col] = lbl
                except Exception:
                    pass

    # filter rare classes and drop na
    if df[label_col].notna().any():
        vc = df[label_col].value_counts()
        rare = vc[vc < min_count_to_keep].index
        if len(rare) > 0:
            df[label_col] = df[label_col].apply(lambda x: 'Other' if x in rare else x)
    df = df.dropna(subset=[label_col])

    # features
    feature_cols = ['duration_min','Load(MW)_num','Capacity(kVA)_num','AffectedCustomer_num','hour','weekday','device_freq','OpDeviceType','Owner','Weather','EventType']
    X = df[feature_cols]
    
    y = df[label_col].astype(str)
    le = LabelEncoder()
    y_encoded = le.fit_transform(y)
    
    # split
    X_train, X_test, y_train, y_test = train_test_split(X, y_encoded, test_size=test_size, random_state=random_state, stratify=y_encoded)
    
    # model
    if model_type == 'rf':
        clf = RandomForestClassifier(random_state=random_state, **hyperparams)
    elif model_type == 'gb':
        clf = GradientBoostingClassifier(random_state=random_state, **hyperparams)
    elif model_type == 'mlp':
        clf = MLPClassifier(random_state=random_state, **hyperparams)
    else:
        raise ValueError(f"Unknown model_type: {model_type}")
    
    # preprocessor
    preprocessor = ColumnTransformer(
        transformers=[
            ('num', Pipeline([('imputer', SimpleImputer(strategy='median')), ('scaler', StandardScaler())]), ['duration_min','Load(MW)_num','Capacity(kVA)_num','AffectedCustomer_num','hour','weekday','device_freq']),
            ('cat', Pipeline([('imputer', SimpleImputer(strategy='most_frequent')), ('encoder', OneHotEncoder(handle_unknown='ignore'))]), ['OpDeviceType','Owner','Weather','EventType'])
        ]
    )
    
    pipeline = Pipeline([('preprocessor', preprocessor), ('classifier', clf)])
    
    pipeline.fit(X_train, y_train)
    
    y_pred = pipeline.predict(X_test)
    y_test_inv = le.inverse_transform(y_test)
    y_pred_inv = le.inverse_transform(y_pred)
    report = classification_report(y_test_inv, y_pred_inv, zero_division=0)
    
    # save model
    model_file = Path('outputs') / f'classifier_{model_type}_{label_col}.joblib'
    model_file.parent.mkdir(exist_ok=True)
    joblib.dump({'pipeline': pipeline, 'label_encoder': le}, model_file)
    
    # predictions on train set for download
    y_pred_train = pipeline.predict(X)
    pred_df = df.copy()
    pred_df[f'Predicted_{label_col}'] = le.inverse_transform(y_pred_train)
    preds_file = Path('outputs') / f'predictions_{model_type}_{label_col}.csv'
    pred_df.to_csv(preds_file, index=False)
    
    return {
        'report': report,
        'model_file': str(model_file),
        'predictions_file': str(preds_file)
    }