Spaces:
Running
Running
Added batch processing
Browse files
app.py
CHANGED
|
@@ -7,6 +7,7 @@ from PIL import Image
|
|
| 7 |
import torch
|
| 8 |
import torch.nn.functional as F
|
| 9 |
import io
|
|
|
|
| 10 |
|
| 11 |
app = FastAPI()
|
| 12 |
|
|
@@ -42,3 +43,41 @@ async def classify_gender(image: UploadFile = File(...)):
|
|
| 42 |
"most_likely": labels[max_idx],
|
| 43 |
"confidence": round(probs[max_idx], 3)
|
| 44 |
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 7 |
import torch
|
| 8 |
import torch.nn.functional as F
|
| 9 |
import io
|
| 10 |
+
from typing import List
|
| 11 |
|
| 12 |
app = FastAPI()
|
| 13 |
|
|
|
|
| 43 |
"most_likely": labels[max_idx],
|
| 44 |
"confidence": round(probs[max_idx], 3)
|
| 45 |
}
|
| 46 |
+
|
| 47 |
+
|
| 48 |
+
|
| 49 |
+
|
| 50 |
+
@app.post("/classify_batch/")
|
| 51 |
+
async def classify_gender_batch(images: List[UploadFile] = File(...)):
|
| 52 |
+
pil_images = []
|
| 53 |
+
for image in images:
|
| 54 |
+
contents = await image.read()
|
| 55 |
+
try:
|
| 56 |
+
img = Image.open(io.BytesIO(contents)).convert("RGB")
|
| 57 |
+
pil_images.append(img)
|
| 58 |
+
except Exception:
|
| 59 |
+
return {"error": f"Invalid image file: {image.filename}"}
|
| 60 |
+
|
| 61 |
+
# Batch process
|
| 62 |
+
inputs = processor(images=pil_images, return_tensors="pt")
|
| 63 |
+
|
| 64 |
+
with torch.no_grad():
|
| 65 |
+
outputs = model(**inputs)
|
| 66 |
+
logits = outputs.logits
|
| 67 |
+
probs = F.softmax(logits, dim=1).tolist() # shape: [batch_size, 2]
|
| 68 |
+
|
| 69 |
+
labels = ["Female ♀", "Male ♂"]
|
| 70 |
+
|
| 71 |
+
results = []
|
| 72 |
+
for p in probs:
|
| 73 |
+
predictions = {labels[i]: round(p[i], 3) for i in range(len(p))}
|
| 74 |
+
max_idx = p.index(max(p))
|
| 75 |
+
results.append({
|
| 76 |
+
"predictions": predictions,
|
| 77 |
+
"most_likely": labels[max_idx],
|
| 78 |
+
"confidence": round(p[max_idx], 3)
|
| 79 |
+
})
|
| 80 |
+
|
| 81 |
+
return {"results": results}
|
| 82 |
+
|
| 83 |
+
|