import streamlit as st import cv2 import numpy as np import matplotlib.pyplot as plt import pandas as pd import plotly.express as px from PIL import Image def analyze_crack(image): # Convert image to grayscale gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) # Edge detection edges = cv2.Canny(gray, 50, 150) # Finding contours contours, _ = cv2.findContours(edges, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE) # Calculate crack metrics crack_lengths = [cv2.arcLength(cnt, True) for cnt in contours] crack_widths = [cv2.boundingRect(cnt)[2] for cnt in contours] return edges, crack_lengths, crack_widths def classify_crack(length, width): if length > 150 or width > 20: return "Major" elif length > 80 or width > 10: return "Moderate" else: return "Minor" def main(): st.set_page_config(page_title='Structural Integrity Analyst', layout='wide', initial_sidebar_state='expanded') st.title('🏗️ Structural Integrity Analyst') st.sidebar.header("Upload Crack Image") uploaded_file = st.sidebar.file_uploader("Choose an image...", type=["jpg", "jpeg", "png"]) if uploaded_file is not None: image = Image.open(uploaded_file) image = np.array(image) edges, crack_lengths, crack_widths = analyze_crack(image) # Classification classifications = [classify_crack(l, w) for l, w in zip(crack_lengths, crack_widths)] # Organize layout col1, col2 = st.columns(2) with col1: st.subheader("Uploaded Image") st.image(uploaded_file, caption="Uploaded Image", use_column_width=True) with col2: st.subheader("Processed Crack Detection") fig, ax = plt.subplots() ax.imshow(edges, cmap='gray') ax.axis("off") st.pyplot(fig) # Data Analysis data = pd.DataFrame({ "Crack Length (pixels)": crack_lengths, "Crack Width (pixels)": crack_widths, "Severity": classifications }) st.subheader("Crack Metrics & Classification") st.dataframe(data) # Discussion Tab st.subheader("Discussion") st.write("Cracks are classified based on their length and width:") st.write("- **Major:** Cracks exceeding 150 pixels in length or 20 pixels in width indicate severe damage and require immediate attention.") st.write("- **Moderate:** Cracks between 80-150 pixels in length or 10-20 pixels in width are moderate and should be monitored closely.") st.write("- **Minor:** Cracks below 80 pixels in length or 10 pixels in width are minor and may not require immediate intervention but should be observed over time.") # Visualization fig1 = px.histogram(data, x="Crack Length (pixels)", color="Severity", title="Crack Length Distribution", nbins=10) fig2 = px.histogram(data, x="Crack Width (pixels)", color="Severity", title="Crack Width Distribution", nbins=10) st.plotly_chart(fig1, use_container_width=True) st.plotly_chart(fig2, use_container_width=True) if __name__ == "__main__": main()