File size: 1,260 Bytes
7c8312b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 |
import pandas as pd
import numpy as np
import faiss
from sentence_transformers import SentenceTransformer
MODEL_NAME = "sentence-transformers/paraphrase-multilingual-mpnet-base-v2"
DATA_FILE = "salahkar_enhanced.csv"
OUTPUT_INDEX = "faiss_index.bin"
OUTPUT_MAPPING = "index_mapping.csv"
print("π Loading dataset...")
df = pd.read_csv(DATA_FILE)
print("π Loading embedding model...")
model = SentenceTransformer(MODEL_NAME)
print("π Generating embeddings...")
if "search_embedding_text" not in df.columns:
print("β 'search_embedding_text' column missing. Using 'name' instead.")
texts = df["name"].astype(str).tolist()
else:
texts = df["search_embedding_text"].astype(str).tolist()
embeddings = model.encode(texts, normalize_embeddings=True)
embeddings = np.array(embeddings).astype("float32")
print("π Building FAISS index...")
dimension = embeddings.shape[1]
index = faiss.IndexFlatIP(dimension)
index.add(embeddings)
print("π Saving FAISS index...")
faiss.write_index(index, OUTPUT_INDEX)
print("π Saving index mapping...")
df[["name", "domain", "category", "region"]].to_csv(OUTPUT_MAPPING, index=False)
print("\nπ SUCCESS: New FAISS index created and synced with dataset!")
|