|
|
from fastapi import FastAPI, Query
|
|
|
from fastapi.middleware.cors import CORSMiddleware
|
|
|
import pandas as pd
|
|
|
|
|
|
from filtered_search_engine import SmartRecommender
|
|
|
from reranker import Reranker
|
|
|
from intent_classifier import IntentClassifier
|
|
|
from keyword_boosting_layer import apply_keyword_boost
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
app = FastAPI(
|
|
|
title="Salahkar AI Recommender",
|
|
|
description="Smart cultural, heritage & food recommendation engine for BharatVerse",
|
|
|
version="1.0.0"
|
|
|
)
|
|
|
|
|
|
from fastapi.staticfiles import StaticFiles
|
|
|
|
|
|
|
|
|
app.add_middleware(
|
|
|
CORSMiddleware,
|
|
|
allow_origins=["*"],
|
|
|
allow_credentials=True,
|
|
|
allow_methods=["*"],
|
|
|
allow_headers=["*"],
|
|
|
)
|
|
|
|
|
|
|
|
|
app.mount("/images", StaticFiles(directory="images"), name="images")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
print("๐ Loading dataset...")
|
|
|
df = pd.read_csv("salahkar_enhanced.csv")
|
|
|
|
|
|
print("๐ Loading smart recommendation engine...")
|
|
|
engine = SmartRecommender()
|
|
|
|
|
|
print("๐ Loading reranker model...")
|
|
|
reranker = Reranker()
|
|
|
|
|
|
print("๐ Loading intent recognizer...")
|
|
|
intent_detector = IntentClassifier()
|
|
|
|
|
|
print("๐ Salahkar AI Ready!")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@app.get("/")
|
|
|
def root():
|
|
|
return {
|
|
|
"message": "๐ฎ๐ณ Welcome to Salahkar AI โ BharatVerse Intelligent Recommendation System",
|
|
|
"usage": "/recommend?query=your text"
|
|
|
}
|
|
|
|
|
|
|
|
|
@app.get("/recommend")
|
|
|
def get_recommendation(query: str = Query(..., description="User's search text"), k: int = 7):
|
|
|
|
|
|
print(f"\n๐ User Query: {query}")
|
|
|
|
|
|
|
|
|
detected_intent = intent_detector.predict_intent(query)
|
|
|
print(f"๐ง Intent Detected: {detected_intent}")
|
|
|
|
|
|
|
|
|
results = engine.recommend(query, k=k)
|
|
|
|
|
|
|
|
|
prepared = []
|
|
|
for name, domain, category, region, score in results:
|
|
|
row = df[df["name"] == name].iloc[0]
|
|
|
prepared.append({
|
|
|
"name": name,
|
|
|
"domain": domain,
|
|
|
"category": category,
|
|
|
"region": region,
|
|
|
"embedding_score": float(score),
|
|
|
"text": row["search_embedding_text"],
|
|
|
"image": row["image_file"]
|
|
|
})
|
|
|
|
|
|
|
|
|
reranked_results = reranker.rerank(query, prepared)
|
|
|
|
|
|
|
|
|
final_results = apply_keyword_boost(query, reranked_results)
|
|
|
|
|
|
|
|
|
response = [
|
|
|
{
|
|
|
"name": item["name"],
|
|
|
"category": item["category"],
|
|
|
"domain": item["domain"],
|
|
|
"region": item["region"],
|
|
|
"score": float(item["final_score"]),
|
|
|
"image": f"/images/{item['image']}" if item.get("image") else None
|
|
|
}
|
|
|
for item in final_results[:k]
|
|
|
]
|
|
|
|
|
|
return {
|
|
|
"query": query,
|
|
|
"intent": detected_intent,
|
|
|
"results": response
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if __name__ == "__main__":
|
|
|
import uvicorn
|
|
|
uvicorn.run(app, host="0.0.0.0", port=7860)
|
|
|
|