bharatverse11's picture
Update app.py
5b7c1e6 verified
from fastapi import FastAPI, Query
from fastapi.middleware.cors import CORSMiddleware
import pandas as pd
from filtered_search_engine import SmartRecommender
from reranker import Reranker
from intent_classifier import IntentClassifier
from keyword_boosting_layer import apply_keyword_boost
from cache_manager import CacheManager
# ------------------------------
# Initialize App
# ------------------------------
app = FastAPI(
title="Salahkar AI Recommender",
description="Smart cultural, heritage & food recommendation engine for BharatVerse",
version="1.0.0"
)
from fastapi.staticfiles import StaticFiles
# CORS Support (allows frontend browser access)
app.add_middleware(
CORSMiddleware,
allow_origins=["*"],
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
)
# Mount images folder to serve static files with Cache-Control
class CachedStaticFiles(StaticFiles):
def file_response(self, *args, **kwargs):
response = super().file_response(*args, **kwargs)
response.headers["Cache-Control"] = "public, max-age=31536000"
return response
app.mount("/images", CachedStaticFiles(directory="images"), name="images")
# ------------------------------
# Load Core Components Once
# ------------------------------
print("๐Ÿ“Œ Loading dataset...")
df = pd.read_csv("salahkar_enhanced.csv")
# Optimization: Create O(1) lookup map
name_to_row = df.set_index("name").to_dict('index')
print("๐Ÿ“Œ Loading smart recommendation engine...")
engine = SmartRecommender()
print("๐Ÿ“Œ Loading reranker model...")
reranker = Reranker()
print("๐Ÿ“Œ Loading intent recognizer...")
intent_detector = IntentClassifier()
print("๐Ÿ“Œ Initializing Cache Manager...")
cache = CacheManager(capacity=200, ttl_seconds=3600)
print("๐Ÿš€ Salahkar AI Ready!")
# ------------------------------
# Routes
# ------------------------------
@app.get("/")
def root():
return {
"message": "๐Ÿ‡ฎ๐Ÿ‡ณ Welcome to Salahkar AI โ€“ BharatVerse Intelligent Recommendation System",
"usage": "/recommend?query=your text"
}
@app.get("/recommend")
def get_recommendation(query: str = Query(..., description="User's search text"), k: int = 7):
print(f"\n๐Ÿ” User Query: {query}")
# 0๏ธโƒฃ Check Cache
cached_response = cache.get(query)
if cached_response:
return cached_response
# 1๏ธโƒฃ Detect intent
detected_intent = intent_detector.predict_intent(query)
print(f"๐Ÿง  Intent Detected: {detected_intent}")
# 2๏ธโƒฃ FAISS + Filter Search
# engine.recommend returns (results_list, intent)
# Optimization: Pass detected_intent to avoid re-running classification
rec_results, _ = engine.recommend(query, k=k, intent=detected_intent)
# 3๏ธโƒฃ Prepare results for reranker
prepared = []
for item in rec_results:
name = item["name"]
domain = item["domain"]
category = item["category"]
region = item["region"]
score = item["score"]
# Optimization: O(1) lookup instead of O(N) dataframe filter
row = name_to_row.get(name)
if not row:
continue
prepared.append({
"name": name,
"domain": domain,
"category": category,
"region": region,
"embedding_score": float(score),
"text": row["search_embedding_text"],
"image": row["image_file"]
})
# 4๏ธโƒฃ Re-rank using cross encoder
reranked_results = reranker.rerank(query, prepared)
# 5๏ธโƒฃ Apply keyword boosting
final_results = apply_keyword_boost(query, reranked_results)
# 6๏ธโƒฃ Format response for frontend
response = [
{
"name": item["name"],
"category": item["category"],
"domain": item["domain"],
"region": item["region"],
"score": float(item["final_score"]),
"image": f"/images/{item['image']}" if item.get("image") else None
}
for item in final_results[:k]
]
final_response = {
"query": query,
"intent": detected_intent,
"results": response
}
# 7๏ธโƒฃ Save to Cache
cache.set(query, final_response)
return final_response
# -------------------------------------------
# Run (Ignored by HuggingFace โ€” needed only for local testing)
# -------------------------------------------
if __name__ == "__main__":
import uvicorn
uvicorn.run(app, host="0.0.0.0", port=7860)