bharatverse11 commited on
Commit
14040fe
ยท
verified ยท
1 Parent(s): 19c3484

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +126 -120
app.py CHANGED
@@ -1,120 +1,126 @@
1
- from fastapi import FastAPI, Query
2
- from fastapi.middleware.cors import CORSMiddleware
3
- import pandas as pd
4
-
5
- from filtered_search_engine import SmartRecommender
6
- from reranker import Reranker
7
- from intent_classifier import IntentClassifier
8
- from keyword_boosting_layer import apply_keyword_boost
9
-
10
- # ------------------------------
11
- # Initialize App
12
- # ------------------------------
13
- app = FastAPI(
14
- title="Salahkar AI Recommender",
15
- description="Smart cultural, heritage & food recommendation engine for BharatVerse",
16
- version="1.0.0"
17
- )
18
-
19
- from fastapi.staticfiles import StaticFiles
20
-
21
- # CORS Support (allows frontend browser access)
22
- app.add_middleware(
23
- CORSMiddleware,
24
- allow_origins=["*"],
25
- allow_credentials=True,
26
- allow_methods=["*"],
27
- allow_headers=["*"],
28
- )
29
-
30
- # Mount images folder to serve static files
31
- app.mount("/images", StaticFiles(directory="images"), name="images")
32
-
33
- # ------------------------------
34
- # Load Core Components Once
35
- # ------------------------------
36
- print("๐Ÿ“Œ Loading dataset...")
37
- df = pd.read_csv("salahkar_enhanced.csv")
38
-
39
- print("๐Ÿ“Œ Loading smart recommendation engine...")
40
- engine = SmartRecommender()
41
-
42
- print("๐Ÿ“Œ Loading reranker model...")
43
- reranker = Reranker()
44
-
45
- print("๐Ÿ“Œ Loading intent recognizer...")
46
- intent_detector = IntentClassifier()
47
-
48
- print("๐Ÿš€ Salahkar AI Ready!")
49
-
50
-
51
- # ------------------------------
52
- # Routes
53
- # ------------------------------
54
-
55
- @app.get("/")
56
- def root():
57
- return {
58
- "message": "๐Ÿ‡ฎ๐Ÿ‡ณ Welcome to Salahkar AI โ€“ BharatVerse Intelligent Recommendation System",
59
- "usage": "/recommend?query=your text"
60
- }
61
-
62
-
63
- @app.get("/recommend")
64
- def get_recommendation(query: str = Query(..., description="User's search text"), k: int = 7):
65
-
66
- print(f"\n๐Ÿ” User Query: {query}")
67
-
68
- # 1๏ธโƒฃ Detect intent
69
- detected_intent = intent_detector.predict_intent(query)
70
- print(f"๐Ÿง  Intent Detected: {detected_intent}")
71
-
72
- # 2๏ธโƒฃ FAISS + Filter Search
73
- results = engine.recommend(query, k=k)
74
-
75
- # 3๏ธโƒฃ Prepare results for reranker
76
- prepared = []
77
- for name, domain, category, region, score in results:
78
- row = df[df["name"] == name].iloc[0]
79
- prepared.append({
80
- "name": name,
81
- "domain": domain,
82
- "category": category,
83
- "region": region,
84
- "embedding_score": float(score),
85
- "text": row["search_embedding_text"],
86
- "image": row["image_file"]
87
- })
88
-
89
- # 4๏ธโƒฃ Re-rank using cross encoder
90
- reranked_results = reranker.rerank(query, prepared)
91
-
92
- # 5๏ธโƒฃ Apply keyword boosting
93
- final_results = apply_keyword_boost(query, reranked_results)
94
-
95
- # 6๏ธโƒฃ Format response for frontend
96
- response = [
97
- {
98
- "name": item["name"],
99
- "category": item["category"],
100
- "domain": item["domain"],
101
- "region": item["region"],
102
- "score": float(item["final_score"]),
103
- "image": f"/images/{item['image']}" if item.get("image") else None
104
- }
105
- for item in final_results[:k]
106
- ]
107
-
108
- return {
109
- "query": query,
110
- "intent": detected_intent,
111
- "results": response
112
- }
113
-
114
-
115
- # -------------------------------------------
116
- # Run (Ignored by HuggingFace โ€” needed only for local testing)
117
- # -------------------------------------------
118
- if __name__ == "__main__":
119
- import uvicorn
120
- uvicorn.run(app, host="0.0.0.0", port=7860)
 
 
 
 
 
 
 
1
+ from fastapi import FastAPI, Query
2
+ from fastapi.middleware.cors import CORSMiddleware
3
+ import pandas as pd
4
+
5
+ from filtered_search_engine import SmartRecommender
6
+ from reranker import Reranker
7
+ from intent_classifier import IntentClassifier
8
+ from keyword_boosting_layer import apply_keyword_boost
9
+
10
+ # ------------------------------
11
+ # Initialize App
12
+ # ------------------------------
13
+ app = FastAPI(
14
+ title="Salahkar AI Recommender",
15
+ description="Smart cultural, heritage & food recommendation engine for BharatVerse",
16
+ version="1.0.0"
17
+ )
18
+
19
+ from fastapi.staticfiles import StaticFiles
20
+
21
+ # CORS Support (allows frontend browser access)
22
+ app.add_middleware(
23
+ CORSMiddleware,
24
+ allow_origins=["*"],
25
+ allow_credentials=True,
26
+ allow_methods=["*"],
27
+ allow_headers=["*"],
28
+ )
29
+
30
+ # Mount images folder to serve static files
31
+ app.mount("/images", StaticFiles(directory="images"), name="images")
32
+
33
+ # ------------------------------
34
+ # Load Core Components Once
35
+ # ------------------------------
36
+ print("๐Ÿ“Œ Loading dataset...")
37
+ df = pd.read_csv("salahkar_enhanced.csv")
38
+
39
+ print("๐Ÿ“Œ Loading smart recommendation engine...")
40
+ engine = SmartRecommender()
41
+
42
+ print("๐Ÿ“Œ Loading reranker model...")
43
+ reranker = Reranker()
44
+
45
+ print("๐Ÿ“Œ Loading intent recognizer...")
46
+ intent_detector = IntentClassifier()
47
+
48
+ print("๐Ÿš€ Salahkar AI Ready!")
49
+
50
+
51
+ # ------------------------------
52
+ # Routes
53
+ # ------------------------------
54
+
55
+ @app.get("/")
56
+ def root():
57
+ return {
58
+ "message": "๐Ÿ‡ฎ๐Ÿ‡ณ Welcome to Salahkar AI โ€“ BharatVerse Intelligent Recommendation System",
59
+ "usage": "/recommend?query=your text"
60
+ }
61
+
62
+
63
+ @app.get("/recommend")
64
+ def get_recommendation(query: str = Query(..., description="User's search text"), k: int = 7):
65
+
66
+ print(f"\n๐Ÿ” User Query: {query}")
67
+
68
+ # 1๏ธโƒฃ Detect intent
69
+ detected_intent = intent_detector.predict_intent(query)
70
+ print(f"๐Ÿง  Intent Detected: {detected_intent}")
71
+
72
+ # 2๏ธโƒฃ FAISS + Filter Search
73
+ # engine.recommend returns (results_list, intent)
74
+ rec_results, _ = engine.recommend(query, k=k)
75
+
76
+ # 3๏ธโƒฃ Prepare results for reranker
77
+ prepared = []
78
+ for item in rec_results:
79
+ name = item["name"]
80
+ domain = item["domain"]
81
+ category = item["category"]
82
+ region = item["region"]
83
+ score = item["score"]
84
+ row = df[df["name"] == name].iloc[0]
85
+ prepared.append({
86
+ "name": name,
87
+ "domain": domain,
88
+ "category": category,
89
+ "region": region,
90
+ "embedding_score": float(score),
91
+ "text": row["search_embedding_text"],
92
+ "image": row["image_file"]
93
+ })
94
+
95
+ # 4๏ธโƒฃ Re-rank using cross encoder
96
+ reranked_results = reranker.rerank(query, prepared)
97
+
98
+ # 5๏ธโƒฃ Apply keyword boosting
99
+ final_results = apply_keyword_boost(query, reranked_results)
100
+
101
+ # 6๏ธโƒฃ Format response for frontend
102
+ response = [
103
+ {
104
+ "name": item["name"],
105
+ "category": item["category"],
106
+ "domain": item["domain"],
107
+ "region": item["region"],
108
+ "score": float(item["final_score"]),
109
+ "image": f"/images/{item['image']}" if item.get("image") else None
110
+ }
111
+ for item in final_results[:k]
112
+ ]
113
+
114
+ return {
115
+ "query": query,
116
+ "intent": detected_intent,
117
+ "results": response
118
+ }
119
+
120
+
121
+ # -------------------------------------------
122
+ # Run (Ignored by HuggingFace โ€” needed only for local testing)
123
+ # -------------------------------------------
124
+ if __name__ == "__main__":
125
+ import uvicorn
126
+ uvicorn.run(app, host="0.0.0.0", port=7860)