Spaces:
Runtime error
Runtime error
| import transformers | |
| import torch | |
| import tokenizers | |
| import streamlit as st | |
| import re | |
| from PIL import Image | |
| def get_model(model_name, model_path): | |
| tokenizer = transformers.GPT2Tokenizer.from_pretrained(model_name) | |
| tokenizer.add_special_tokens({ | |
| 'eos_token': '[EOS]' | |
| }) | |
| model = transformers.GPT2LMHeadModel.from_pretrained(model_name) | |
| model.resize_token_embeddings(len(tokenizer)) | |
| model.load_state_dict(torch.load(model_path, map_location=torch.device('cpu'))) | |
| model.eval() | |
| return model, tokenizer | |
| def predict(text, model, tokenizer, n_beams=5, temperature=2.5, top_p=0.8, length_of_generated=300): | |
| text += '\n' | |
| input_ids = tokenizer.encode(text, return_tensors="pt") | |
| length_of_prompt = len(input_ids[0]) | |
| with torch.no_grad(): | |
| out = model.generate(input_ids, | |
| do_sample=True, | |
| num_beams=n_beams, | |
| temperature=temperature, | |
| top_p=top_p, | |
| max_length=length_of_prompt + length_of_generated, | |
| eos_token_id=tokenizer.eos_token_id | |
| ) | |
| generated = list(map(tokenizer.decode, out))[0] | |
| return generated.replace('\n[EOS]\n', '') | |
| medium_model, medium_tokenizer = get_model('sberbank-ai/rugpt3medium_based_on_gpt2', 'korzh-medium_best_eval_loss.bin') | |
| large_model, large_tokenizer = get_model('sberbank-ai/rugpt3large_based_on_gpt2', 'korzh-large_best_eval_loss.bin') | |
| # st.title("NeuroKorzh") | |
| image = Image.open('korzh.jpg') | |
| st.image(image, caption='НейроКорж') | |
| option = st.selectbox('Выберите своего Коржа', ('Быстрый', 'Глубокий')) | |
| craziness = st.slider(label='Абсурдность', min_value=0, max_value=100, value=50, step=5) | |
| temperature = 2 + craziness / 50. | |
| st.markdown("\n") | |
| text = st.text_area(label='Напишите начало песни', value='Что делать, Макс?', height=70) | |
| button = st.button('Старт') | |
| if button: | |
| try: | |
| with st.spinner("Пушечка пишется"): | |
| if option == 'Быстрый': | |
| result = predict(text, medium_model, medium_tokenizer, temperature=temperature) | |
| elif option == 'Глубокий': | |
| result = predict(text, large_model, large_tokenizer, temperature=temperature) | |
| else: | |
| st.error('Error in selectbox') | |
| st.text_area(label='', value=result, height=1000) | |
| except Exception: | |
| st.error("Ooooops, something went wrong. Please try again and report to me, tg: @vladyur") |