Spaces:
Running
Running
File size: 21,446 Bytes
9c28499 c0da66d 9c28499 c0da66d 9c28499 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 |
"""
CV Chatbot with RAG (Retrieval-Augmented Generation)
FastAPI backend that uses semantic search to answer questions about your CV
"""
import json
import os
import re
import threading
import time
from typing import List, Dict, Optional, Tuple
import numpy as np
import torch
from fastapi import Depends, FastAPI, HTTPException, Header
from fastapi.middleware.cors import CORSMiddleware
from pydantic import BaseModel
import huggingface_hub
from huggingface_hub import hf_hub_download
from itsdangerous import BadSignature, SignatureExpired, URLSafeTimedSerializer
# Provide backward-compatible alias for deprecated cached_download expected by older sentence-transformers.
if not hasattr(huggingface_hub, "cached_download"):
from pathlib import Path
from urllib.parse import urlparse
import requests
from huggingface_hub.utils import build_hf_headers
def cached_download( # type: ignore[override]
url: str,
*,
cache_dir: str | None = None,
force_filename: str | None = None,
library_name: str | None = None,
library_version: str | None = None,
user_agent: str | None = None,
use_auth_token: str | None = None,
**_: dict
) -> str:
"""
Minimal shim replicating the deprecated huggingface_hub.cached_download API.
Downloads the file to the requested cache directory while supporting
the keyword arguments used by sentence-transformers==2.2.2.
"""
cache_root = Path(cache_dir or huggingface_hub.constants.HUGGINGFACE_HUB_CACHE)
filename = force_filename or Path(urlparse(url).path).name
target_path = cache_root / filename
target_path.parent.mkdir(parents=True, exist_ok=True)
if target_path.exists():
return str(target_path)
headers = build_hf_headers(
library_name=library_name,
library_version=library_version,
user_agent=user_agent,
token=use_auth_token,
)
with requests.get(url, stream=True, headers=headers) as response:
response.raise_for_status()
with open(target_path, "wb") as file_out:
for chunk in response.iter_content(chunk_size=1024 * 1024):
if chunk:
file_out.write(chunk)
return str(target_path)
huggingface_hub.cached_download = cached_download # type: ignore[attr-defined]
from sentence_transformers import SentenceTransformer
import faiss
# Import configuration
from config import (
LLM_PROVIDER,
HUGGINGFACE_API_KEY,
HUGGINGFACE_MODEL,
LOCAL_MODEL_REPO,
LOCAL_MODEL_FILENAME,
LOCAL_MODEL_CONTEXT_LENGTH,
LOCAL_MODEL_THREADS,
LOCAL_MODEL_BATCH_SIZE,
LOCAL_MODEL_MAX_OUTPUT_TOKENS,
LOCAL_MODEL_HF_TOKEN,
CLIENT_APP_ORIGINS,
API_ACCESS_TOKEN,
SESSION_TOKEN_SECRET,
SESSION_TOKEN_TTL_SECONDS,
EMBEDDING_MODEL,
CHUNK_SIZE,
CHUNK_OVERLAP,
TOP_K_RESULTS,
SYSTEM_PROMPT
)
# Initialize FastAPI
app = FastAPI(title="CV Chatbot RAG API")
# Add CORS middleware
allowed_origins = CLIENT_APP_ORIGINS or ["*"]
app.add_middleware(
CORSMiddleware,
allow_origins=allowed_origins,
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
)
# Pydantic models
class ChatRequest(BaseModel):
message: str
class ChatResponse(BaseModel):
response: str
context_used: List[str]
# Global variables for RAG components
embedding_model = None
model_device = "cpu"
cv_chunks = []
cv_embeddings = None
faiss_index = None
llm_client = None
local_model_path: str | None = None
local_model_lock = threading.Lock()
_session_serializer: Optional[URLSafeTimedSerializer] = None
def get_session_serializer() -> URLSafeTimedSerializer:
"""Lazily initialize the session token serializer."""
global _session_serializer
if not SESSION_TOKEN_SECRET:
raise HTTPException(
status_code=500,
detail="SESSION_TOKEN_SECRET is not configured on the server.",
)
if _session_serializer is None:
_session_serializer = URLSafeTimedSerializer(SESSION_TOKEN_SECRET)
return _session_serializer
def create_session_token() -> str:
"""Create a signed, timestamped session token."""
serializer = get_session_serializer()
return serializer.dumps({"issued_at": int(time.time())})
def validate_session_token(token: str) -> None:
"""Validate an incoming session token and enforce expiration."""
serializer = get_session_serializer()
try:
serializer.loads(token, max_age=SESSION_TOKEN_TTL_SECONDS)
except SignatureExpired as err:
raise HTTPException(status_code=401, detail="Session token expired") from err
except BadSignature as err:
raise HTTPException(status_code=401, detail="Invalid session token") from err
def personalize_question(text: str) -> Tuple[str, bool]:
"""Normalize questions and detect whether the user is addressing the assistant."""
assistant_patterns = [
r"\bwho\s+are\s+you\b",
r"\bwhat\s+are\s+you\b",
r"\bwho\s+is\s+this\b",
r"\bare\s+you\s+(real|human)\b",
]
normalized_lower = text.lower()
if any(re.search(pattern, normalized_lower) for pattern in assistant_patterns):
return text, True
def match_case(token: str, replacement: str) -> str:
if token.isupper():
return replacement.upper()
if token[0].isupper():
return replacement.capitalize()
return replacement
def replace_third_person(match: re.Match[str]) -> str:
token = match.group(0)
return match_case(token, "Bi")
def replace_possessive(match: re.Match[str]) -> str:
token = match.group(0)
return match_case(token, "Bi's")
updated = re.sub(r"\bhis\b", replace_possessive, text, flags=re.IGNORECASE)
updated = re.sub(r"\bhe\b", replace_third_person, updated, flags=re.IGNORECASE)
updated = re.sub(r"\bhim\b", replace_third_person, updated, flags=re.IGNORECASE)
return updated, False
def verify_client_access(
x_api_token: str = Header(default=""),
x_session_token: str = Header(default=""),
) -> None:
"""Ensure only approved clients can call protected endpoints."""
if API_ACCESS_TOKEN:
if not x_api_token:
raise HTTPException(status_code=401, detail="Missing client token")
if x_api_token != API_ACCESS_TOKEN:
raise HTTPException(status_code=401, detail="Invalid client token")
return
if SESSION_TOKEN_SECRET:
if not x_session_token:
raise HTTPException(status_code=401, detail="Missing session token")
validate_session_token(x_session_token)
return
# If no secrets configured, allow access (useful for local development)
return
def load_cv_data(file_path: str = "cv_data.json") -> str:
"""Load and flatten CV data from JSON into a single text"""
with open(file_path, 'r') as f:
data = json.load(f)
# Convert structured JSON to readable text
text_parts = []
# Personal info
if "personal_info" in data:
info = data["personal_info"]
text_parts.append(f"Name: {info.get('name', '')}")
text_parts.append(f"Title: {info.get('title', '')}")
text_parts.append(f"Bio: {info.get('bio', '')}")
text_parts.append(f"Contact: {info.get('email', '')}, {info.get('location', '')}")
# Summary
if "summary" in data:
text_parts.append(f"Professional Summary: {data['summary']}")
# Skills
if "skills" in data:
for category, items in data["skills"].items():
text_parts.append(f"{category.replace('_', ' ').title()}: {', '.join(items)}")
# Experience
if "experience" in data:
for exp in data["experience"]:
text_parts.append(
f"Experience: {exp['title']} at {exp['company']} ({exp['duration']}). "
f"{exp['description']} Achievements: {' '.join(exp.get('achievements', []))}"
)
# Education
if "education" in data:
for edu in data["education"]:
text_parts.append(
f"Education: {edu['degree']} from {edu['institution']} ({edu.get('graduation', '')})"
)
# Projects
if "projects" in data:
for proj in data["projects"]:
text_parts.append(
f"Project: {proj['name']}. {proj['description']} "
f"Technologies: {', '.join(proj.get('technologies', []))}. "
f"{' '.join(proj.get('highlights', []))}"
)
# Certifications
if "certifications" in data:
for cert in data["certifications"]:
text_parts.append(f"Certification: {cert['name']} from {cert['issuer']}")
# Interests
if "interests" in data:
text_parts.append(f"Interests: {', '.join(data['interests'])}")
return "\n\n".join(text_parts)
def chunk_text(text: str, chunk_size: int = CHUNK_SIZE, overlap: int = CHUNK_OVERLAP) -> List[str]:
"""Split text into overlapping chunks"""
chunks = []
start = 0
text_length = len(text)
while start < text_length:
end = start + chunk_size
chunk = text[start:end]
# Try to break at sentence boundary
if end < text_length:
last_period = chunk.rfind('.')
last_newline = chunk.rfind('\n')
break_point = max(last_period, last_newline)
if break_point > chunk_size * 0.5: # Only break if we're past halfway
chunk = chunk[:break_point + 1]
end = start + break_point + 1
chunks.append(chunk.strip())
start = end - overlap
return chunks
def initialize_rag():
"""Initialize RAG components: embeddings, vector store"""
global embedding_model, cv_chunks, cv_embeddings, faiss_index, model_device
print("Loading embedding model...")
model_device = "cpu"
if torch.cuda.is_available():
try:
embedding_model = SentenceTransformer(EMBEDDING_MODEL, device="cuda")
model_device = "cuda"
print("Embedding model loaded on CUDA")
except Exception as cuda_err:
print(f"CUDA initialization failed ({cuda_err}); falling back to CPU.")
embedding_model = SentenceTransformer(EMBEDDING_MODEL, device="cpu")
else:
embedding_model = SentenceTransformer(EMBEDDING_MODEL, device="cpu")
print(f"Embedding model using device: {model_device}")
print("Loading CV data...")
cv_text = load_cv_data()
print("Chunking CV text...")
cv_chunks = chunk_text(cv_text)
print(f"Created {len(cv_chunks)} chunks")
print("Generating embeddings...")
try:
cv_embeddings = embedding_model.encode(cv_chunks, convert_to_numpy=True)
except RuntimeError as err:
if "cuda" in str(err).lower():
print(f"CUDA error during embedding generation ({err}); retrying on CPU.")
embedding_model = SentenceTransformer(EMBEDDING_MODEL, device="cpu")
model_device = "cpu"
cv_embeddings = embedding_model.encode(cv_chunks, convert_to_numpy=True)
else:
raise
print("Building FAISS index...")
dimension = cv_embeddings.shape[1]
faiss_index = faiss.IndexFlatL2(dimension)
faiss_index.add(cv_embeddings)
print("RAG initialization complete!")
def initialize_llm():
"""Initialize LLM client based on provider"""
global llm_client, local_model_path
if LLM_PROVIDER == "huggingface":
# Will use requests for HF Inference API
if not HUGGINGFACE_API_KEY:
raise ValueError("HUGGINGFACE_API_KEY not set in environment variables")
print(f"Initialized HuggingFace Inference API with model: {HUGGINGFACE_MODEL}")
elif LLM_PROVIDER == "local":
try:
from llama_cpp import Llama # type: ignore[import]
except ImportError as import_err:
raise ValueError(
"llama-cpp-python is not installed. Ensure requirements are up to date."
) from import_err
auth_token = LOCAL_MODEL_HF_TOKEN or None
print(
f"Downloading quantized model {LOCAL_MODEL_REPO}/{LOCAL_MODEL_FILENAME} "
"via Hugging Face Hub..."
)
try:
local_model_path = hf_hub_download(
repo_id=LOCAL_MODEL_REPO,
filename=LOCAL_MODEL_FILENAME,
token=auth_token,
)
except Exception as download_err:
raise ValueError(
f"Failed to download local model file: {download_err}"
) from download_err
print(
"Loading local quantized model with llama.cpp "
f"(context={LOCAL_MODEL_CONTEXT_LENGTH}, threads={LOCAL_MODEL_THREADS}, "
f"batch={LOCAL_MODEL_BATCH_SIZE})..."
)
try:
llm_client = Llama(
model_path=local_model_path,
n_ctx=LOCAL_MODEL_CONTEXT_LENGTH,
n_threads=LOCAL_MODEL_THREADS,
n_batch=LOCAL_MODEL_BATCH_SIZE,
n_gpu_layers=0,
chat_format="gemma", # Works for both Gemma 1 and Gemma 2
verbose=True, # Enable to see prompt formatting
)
except Exception as load_err:
raise ValueError(f"Failed to load local model: {load_err}") from load_err
print("Local quantized model ready for inference.")
else:
raise ValueError(f"Unsupported LLM provider: {LLM_PROVIDER}")
def retrieve_relevant_chunks(query: str, top_k: int = TOP_K_RESULTS) -> List[str]:
"""Retrieve most relevant CV chunks for the query"""
# Embed the query
try:
query_embedding = embedding_model.encode([query], convert_to_numpy=True)
except RuntimeError as err:
if "cuda" in str(err).lower():
print(f"CUDA error during query embedding ({err}); moving model to CPU.")
embedding_model.to("cpu")
query_embedding = embedding_model.encode([query], convert_to_numpy=True)
else:
raise
# Search in FAISS index
distances, indices = faiss_index.search(query_embedding, top_k)
# Get the relevant chunks
relevant_chunks = [cv_chunks[idx] for idx in indices[0]]
return relevant_chunks
def generate_response_huggingface(prompt: str) -> str:
"""Generate response using HuggingFace Inference API (OpenAI-compatible endpoint)."""
import requests
if not HUGGINGFACE_API_KEY:
raise HTTPException(status_code=500, detail="HUGGINGFACE_API_KEY is not set")
api_url = "https://router.huggingface.co/v1/chat/completions"
headers = {"Authorization": f"Bearer {HUGGINGFACE_API_KEY}"}
payload = {
"model": HUGGINGFACE_MODEL,
"messages": [
{"role": "system", "content": SYSTEM_PROMPT},
{"role": "user", "content": prompt},
],
"temperature": 0.7,
"max_tokens": 500,
}
try:
response = requests.post(api_url, headers=headers, json=payload, timeout=60)
print("HuggingFace status:", response.status_code)
print("HuggingFace response text:", response.text[:500])
response.raise_for_status()
result = response.json()
if isinstance(result, dict):
choices = result.get("choices")
if isinstance(choices, list) and choices:
message = choices[0].get("message", {})
content = message.get("content")
if content:
return content.strip()
return str(result)
except Exception as e:
print("HuggingFace API error occurred:", repr(e))
raise HTTPException(status_code=500, detail=f"HuggingFace API error: {str(e)}")
def generate_response_local(system_prompt: str, user_prompt: str) -> str:
"""Generate response using a locally hosted quantized model."""
global llm_client
if llm_client is None:
raise HTTPException(status_code=500, detail="Local model is not initialized")
try:
with local_model_lock:
if os.getenv("DEBUG_LOCAL_PROMPT", "0") == "1":
preview = user_prompt if len(user_prompt) < 400 else user_prompt[:400] + "..."
print("Local prompt =>", preview)
completion = llm_client.create_chat_completion(
messages=[
{"role": "system", "content": system_prompt},
{"role": "user", "content": user_prompt},
],
max_tokens=LOCAL_MODEL_MAX_OUTPUT_TOKENS,
temperature=0.5,
top_p=0.9,
repeat_penalty=1.2,
stop=["<end_of_turn>", "</s>"],
)
except Exception as err:
raise HTTPException(status_code=500, detail=f"Local model error: {err}") from err
try:
choices = completion.get("choices", [])
if choices:
message = choices[0].get("message", {})
content = message.get("content")
if content:
return content.strip()
return str(completion)
except Exception as parse_err:
raise HTTPException(
status_code=500, detail=f"Unexpected local model response format: {parse_err}"
) from parse_err
def generate_response(
context: str,
question: str,
original_question: str | None = None,
assistant_query: bool = False,
) -> str:
"""Generate response using configured LLM provider"""
if assistant_query:
persona_instruction = (
"Respond in first person as Bi's AI assistant. Mention you run locally on a "
"quantized Google Gemma 2B IT model (Q4_K_M via llama.cpp with MiniLM embeddings and FAISS)."
)
else:
persona_instruction = (
"Speak directly about Bi by name in a professional, supportive manner - like a knowledgeable secretary. "
"Use direct references such as 'Bi has experience in...', 'Bi specializes in...', 'Bi worked on...'. "
"Rely only on the provided context."
)
system_prompt = "\n".join(
[
SYSTEM_PROMPT.strip(),
persona_instruction,
"Provide a direct, concise answer without repeating the context.",
"If the context lacks the answer, state that politely.",
"Do not echo or list the context - synthesize it into a clear response.",
]
)
user_prompt = f"""Context:
{context}
Question: {original_question or question}
Provide a concise, professional answer based only on the context above."""
combined_prompt = f"{system_prompt}\n\n{user_prompt}"
if LLM_PROVIDER == "huggingface":
return generate_response_huggingface(combined_prompt)
elif LLM_PROVIDER == "local":
return generate_response_local(system_prompt, user_prompt)
else:
raise ValueError(f"Unsupported LLM provider: {LLM_PROVIDER}")
@app.on_event("startup")
async def startup_event():
"""Initialize RAG and LLM on startup"""
print("Starting up...")
initialize_rag()
initialize_llm()
print("Ready to serve requests!")
@app.get("/")
async def root():
"""Health check endpoint"""
return {
"status": "ok",
"message": "CV Chatbot RAG API is running",
"llm_provider": LLM_PROVIDER,
"chunks_loaded": len(cv_chunks)
}
@app.get("/session-token")
async def session_token():
"""Issue a short-lived session token for client-side access."""
if not SESSION_TOKEN_SECRET:
raise HTTPException(status_code=500, detail="Session tokens are not configured")
token = create_session_token()
return {"token": token, "expires_in": SESSION_TOKEN_TTL_SECONDS}
@app.post("/chat", response_model=ChatResponse)
async def chat(request: ChatRequest, _: None = Depends(verify_client_access)):
"""Main chat endpoint with RAG"""
try:
# Retrieve relevant chunks
relevant_chunks = retrieve_relevant_chunks(request.message)
# Build context from chunks
context = "\n\n".join(relevant_chunks)
# Generate response
response = generate_response(
context,
request.message,
original_question=request.message,
)
return ChatResponse(
response=response,
context_used=relevant_chunks
)
except Exception as e:
print(e)
raise HTTPException(status_code=500, detail=str(e))
@app.get("/health")
async def health():
"""Detailed health check"""
return {
"status": "healthy",
"rag_initialized": embedding_model is not None,
"llm_initialized": llm_client is not None or LLM_PROVIDER == "huggingface",
"chunks_count": len(cv_chunks),
"llm_provider": LLM_PROVIDER,
"local_model_path": local_model_path if LLM_PROVIDER == "local" else None,
"allowed_origins": allowed_origins,
"token_protected": bool(API_ACCESS_TOKEN),
"session_tokens_enabled": bool(SESSION_TOKEN_SECRET),
"session_token_ttl": SESSION_TOKEN_TTL_SECONDS if SESSION_TOKEN_SECRET else None,
}
if __name__ == "__main__":
import uvicorn
uvicorn.run(app, host="0.0.0.0", port=7860)
|