File size: 8,737 Bytes
7f4c99b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
aa0cb15
 
7f4c99b
 
 
 
 
 
 
 
 
 
 
 
 
 
fc39399
 
 
 
 
 
 
 
 
 
 
7f4c99b
3a26d89
 
 
 
 
 
 
 
75ba08b
7f4c99b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
75ba08b
 
 
 
7f4c99b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
75ba08b
7f4c99b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2b7d18b
7f4c99b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
import os
import subprocess
import sys
import io
import gradio as gr
import numpy as np
import random
import spaces
import torch
from diffusers import Flux2Pipeline, Flux2Transformer2DModel
from diffusers import BitsAndBytesConfig as DiffBitsAndBytesConfig
from optimization import optimize_pipeline_
import requests
from PIL import Image
import json

dtype = torch.bfloat16
device = "cuda" if torch.cuda.is_available() else "cpu"

MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 1024

def remote_text_encoder(prompts):
    response = requests.post(
        "https://remote-text-encoder-flux-2.huggingface.co/predict",
        json={"prompt": prompts},
        headers={
            "Authorization": f"Bearer {os.environ['HF_TOKEN']}",
            "Content-Type": "application/json"
        }
    )

    assert response.status_code == 200, f"{response.status_code=}"

    prompt_embeds = torch.load(io.BytesIO(response.content))

    return prompt_embeds

# Load model
repo_id = "black-forest-labs/FLUX.2-dev"

dit = Flux2Transformer2DModel.from_pretrained(
    repo_id,
    subfolder="transformer",
    torch_dtype=torch.bfloat16
)

pipe = Flux2Pipeline.from_pretrained(
    repo_id,
    text_encoder=None,
    transformer=dit,
    torch_dtype=torch.bfloat16
)
pipe.to("cuda")

pipe.transformer.set_attention_backend("_flash_3_hub")

optimize_pipeline_(
    pipe,
    image=[Image.new("RGB", (1024, 1024))],
    prompt_embeds = remote_text_encoder("prompt").to("cuda"),
    guidance_scale=2.5,
    width=1024,
    height=1024,
    num_inference_steps=1
)


def get_duration(prompt, input_images=None, seed=42, randomize_seed=False, width=1024, height=1024, num_inference_steps=50, guidance_scale=2.5, progress=gr.Progress(track_tqdm=True)):
    num_images = 0 if input_images is None else len(input_images)
    step_duration = 1 + 0.7 * num_images
    return num_inference_steps * step_duration + 10


@spaces.GPU(duration=get_duration)
def infer(prompt, input_images=None, seed=42, randomize_seed=False, width=1024, height=1024, num_inference_steps=50, guidance_scale=2.5, progress=gr.Progress(track_tqdm=True)):
    
    if randomize_seed:
        seed = random.randint(0, MAX_SEED)
    
    # Get prompt embeddings from remote text encoder
    progress(0.1, desc="Encoding prompt...")
    prompt_embeds = remote_text_encoder(prompt).to("cuda")
    
    # Prepare image list (convert None or empty gallery to None)
    image_list = None
    if input_images is not None and len(input_images) > 0:
        image_list = []
        for item in input_images:
            image_list.append(item[0])
    
    # Generate image
    progress(0.3, desc="Generating image...")
    generator = torch.Generator(device=device).manual_seed(seed)
    image = pipe(
        prompt_embeds=prompt_embeds,
        image=image_list,
        width=width,
        height=height,
        num_inference_steps=num_inference_steps,
        guidance_scale=guidance_scale,
        generator=generator,
    ).images[0]
    
    return image, seed

examples = [
    ["Create a vase on a table in living room, the color of the vase is a gradient of color, starting with #02eb3c color and finishing with #edfa3c. The flowers inside the vase have the color #ff0088"],
    ["Photorealistic infographic showing the complete Berlin TV Tower (Fernsehturm) from ground base to antenna tip, full vertical view with entire structure visible including concrete shaft, metallic sphere, and antenna spire. Slight upward perspective angle looking up toward the iconic sphere, perfectly centered on clean white background. Left side labels with thin horizontal connector lines: the text '368m' in extra large bold dark grey numerals (#2D3748) positioned at exactly the antenna tip with 'TOTAL HEIGHT' in small caps below. The text '207m' in extra large bold with 'TELECAFÉ' in small caps below, with connector line touching the sphere precisely at the window level. Right side label with horizontal connector line touching the sphere's equator: the text '32m' in extra large bold dark grey numerals with 'SPHERE DIAMETER' in small caps below. Bottom section arranged in three balanced columns: Left - Large text '986' in extra bold dark grey with 'STEPS' in caps below. Center - 'BERLIN TV TOWER' in bold caps with 'FERNSEHTURM' in lighter weight below. Right - 'INAUGURATED' in bold caps with 'OCTOBER 3, 1969' below. All typography in modern sans-serif font (such as Inter or Helvetica), color #2D3748, clean minimal technical diagram style. Horizontal connector lines are thin, precise, and clearly visible, touching the tower structure at exact corresponding measurement points. Professional architectural elevation drawing aesthetic with dynamic low angle perspective creating sense of height and grandeur, poster-ready infographic design with perfect visual hierarchy."],
    ["Soaking wet capybara taking shelter under a banana leaf in the rainy jungle, close up photo"],
    ["A kawaii die-cut sticker of a chubby orange cat, featuring big sparkly eyes and a happy smile with paws raised in greeting and a heart-shaped pink nose. The design should have smooth rounded lines with black outlines and soft gradient shading with pink cheeks."],
]

examples_images = [
    # ["Replace the top of the person from image 1 with the one from image 2", ["person1.webp", "woman2.webp"]],
    ["The person from image 1 is petting the cat from image 2, the bird from image 3 is next to them", ["woman1.webp", "cat_window.webp", "bird.webp"]]
]

css="""
#col-container {
    margin: 0 auto;
    max-width: 620px;
}
"""

with gr.Blocks() as demo:
    
    with gr.Column(elem_id="col-container"):
        gr.Markdown(f"""# FLUX.2 [dev]
FLUX.2 [dev] is a 32B model rectified flow capable of generating, editing and combining images based on text instructions model [[model](https://huggingface.co/black-forest-labs/FLUX.2-dev)], [[blog](https://bfl.ai/blog/flux-2)]
        """)

        with gr.Accordion("Input image(s) (optional)", open=False):
            input_images = gr.Gallery(
                label="Input Image(s)",
                type="pil",
                columns=3,
                rows=1,
            )
        
        with gr.Row():
            
            prompt = gr.Text(
                label="Prompt",
                show_label=False,
                max_lines=2,
                placeholder="Enter your prompt",
                container=False,
                scale=3
            )
            
            run_button = gr.Button("Run", scale=1)
        
        result = gr.Image(label="Result", show_label=False)
        
        with gr.Accordion("Advanced Settings", open=False):
            
            seed = gr.Slider(
                label="Seed",
                minimum=0,
                maximum=MAX_SEED,
                step=1,
                value=0,
            )
            
            randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
            
            with gr.Row():
                
                width = gr.Slider(
                    label="Width",
                    minimum=256,
                    maximum=MAX_IMAGE_SIZE,
                    step=32,
                    value=1024,
                )
                
                height = gr.Slider(
                    label="Height",
                    minimum=256,
                    maximum=MAX_IMAGE_SIZE,
                    step=32,
                    value=1024,
                )
            
            with gr.Row():
                
                num_inference_steps = gr.Slider(
                    label="Number of inference steps",
                    minimum=1,
                    maximum=100,
                    step=1,
                    value=30,
                )
                
                guidance_scale = gr.Slider(
                    label="Guidance scale",
                    minimum=0.0,
                    maximum=10.0,
                    step=0.1,
                    value=4,
                )
        
        gr.Examples(
            examples=examples,
            fn=infer,
            inputs=[prompt],
            outputs=[result, seed],
            cache_examples=True,
            cache_mode="lazy"
        )

        gr.Examples(
            examples=examples_images,
            fn=infer,
            inputs=[prompt, input_images],
            outputs=[result, seed],
            cache_examples=True,
            cache_mode="lazy"
        )

    gr.on(
        triggers=[run_button.click, prompt.submit],
        fn=infer,
        inputs=[prompt, input_images, seed, randomize_seed, width, height, num_inference_steps, guidance_scale],
        outputs=[result, seed]
    )

demo.launch(css=css)