Spaces:
Runtime error
Runtime error
| # Copyright (c) 2023, Baichuan Intelligent Technology. All rights reserved. | |
| # Modified by hiyouga, to support attention mask, the alibi implementation is largely borrowed from | |
| # https://github.com/huggingface/transformers/blob/main/src/transformers/models/bloom/modeling_bloom.py | |
| import math | |
| from typing import List, Optional, Tuple, Union | |
| import torch | |
| import torch.utils.checkpoint | |
| import torch.nn.functional as F | |
| from torch import nn | |
| from torch.nn import CrossEntropyLoss | |
| from transformers import PreTrainedModel | |
| from transformers.activations import ACT2FN | |
| from transformers.modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast | |
| from transformers.utils import logging | |
| from .configuration_baichuan import BaichuanConfig | |
| logger = logging.get_logger(__name__) | |
| # Copied from transformers.models.bloom.modeling_bloom._make_causal_mask | |
| def _make_causal_mask( | |
| input_ids_shape: torch.Size, device: torch.device, past_key_values_length: int | |
| ) -> torch.BoolTensor: | |
| """ | |
| Make causal mask used for self-attention. | |
| """ | |
| batch_size, target_length = input_ids_shape | |
| mask = torch.empty((target_length, target_length + past_key_values_length), dtype=torch.bool, device=device) | |
| # ONNX doesn't support `torch.Tensor.triu` properly, thus we use this workaround | |
| seq_ids = torch.arange(target_length, device=device) | |
| mask[:, past_key_values_length:] = seq_ids[:, None] < seq_ids[None, :] | |
| if past_key_values_length > 0: | |
| mask[:, :past_key_values_length] = False | |
| expanded_mask = mask[None, None, :, :].expand(batch_size, 1, target_length, target_length + past_key_values_length) | |
| return expanded_mask | |
| # Copied from transformers.models.bloom.modeling_bloom._expand_mask | |
| def _expand_mask(mask: torch.Tensor, tgt_length: int) -> torch.BoolTensor: | |
| """ | |
| Expands attention_mask from `[batch_size, src_length]` to `[batch_size, 1, tgt_length, src_length]`. | |
| """ | |
| batch_size, src_length = mask.shape | |
| tgt_length = tgt_length if tgt_length is not None else src_length | |
| expanded_mask = ~(mask[:, None, None, :].to(torch.bool)) | |
| return expanded_mask.expand(batch_size, 1, tgt_length, src_length) | |
| # Copied from transformers.models.bloom.modeling_bloom.build_alibi_tensor | |
| def build_alibi_tensor(attention_mask: torch.Tensor, num_heads: int, dtype: torch.dtype) -> torch.Tensor: | |
| """ | |
| Link to paper: https://arxiv.org/abs/2108.12409 Alibi tensor is not causal as the original paper mentions, it | |
| relies on a translation invariance of softmax for quick implementation: with l being a tensor, and a fixed value | |
| `softmax(l+a) = softmax(l)`. | |
| Args: | |
| Returns tensor shaped (batch_size * num_heads, 1, max_seq_len) | |
| attention_mask (`torch.Tensor`): | |
| Token-wise attention mask, this should be of shape (batch_size, max_seq_len). | |
| num_heads (`int`, *required*): | |
| number of heads | |
| dtype (`torch.dtype`, *optional*, default=`torch.bfloat16`): | |
| dtype of the output tensor | |
| """ | |
| batch_size, seq_length = attention_mask.shape | |
| closest_power_of_2 = 2 ** math.floor(math.log2(num_heads)) | |
| base = torch.tensor( | |
| 2 ** (-(2 ** -(math.log2(closest_power_of_2) - 3))), device=attention_mask.device, dtype=torch.float32 | |
| ) | |
| powers = torch.arange(1, 1 + closest_power_of_2, device=attention_mask.device, dtype=torch.int32) | |
| slopes = torch.pow(base, powers) | |
| if closest_power_of_2 != num_heads: | |
| extra_base = torch.tensor( | |
| 2 ** (-(2 ** -(math.log2(2 * closest_power_of_2) - 3))), device=attention_mask.device, dtype=torch.float32 | |
| ) | |
| num_remaining_heads = min(closest_power_of_2, num_heads - closest_power_of_2) | |
| extra_powers = torch.arange(1, 1 + 2 * num_remaining_heads, 2, device=attention_mask.device, dtype=torch.int32) | |
| slopes = torch.cat([slopes, torch.pow(extra_base, extra_powers)], dim=0) | |
| # Note: alibi will added to the attention bias that will be applied to the query, key product of attention | |
| # => therefore alibi will have to be of shape (batch_size, num_heads, query_length, key_length) | |
| # => here we set (batch_size=1, num_heads=num_heads, query_length=1, key_length=max_length) | |
| # => the query_length dimension will then be broadcasted correctly | |
| arange_tensor = ((attention_mask.cumsum(dim=-1) - 1) * attention_mask)[:, None, :] | |
| alibi = slopes[..., None] * arange_tensor | |
| return alibi.reshape(batch_size * num_heads, 1, seq_length).to(dtype) | |
| class RMSNorm(nn.Module): | |
| def __init__(self, hidden_size, epsilon=1e-6): | |
| super().__init__() | |
| self.weight = nn.Parameter(torch.ones(hidden_size)) | |
| self.epsilon = epsilon | |
| def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: | |
| input_dtype = hidden_states.dtype | |
| variance = hidden_states.to(torch.float32).pow(2).mean(-1, keepdim=True) | |
| hidden_states = hidden_states * torch.rsqrt(variance + self.epsilon) | |
| return (self.weight * hidden_states).to(input_dtype) | |
| class MLP(nn.Module): | |
| def __init__( | |
| self, | |
| hidden_size: int, | |
| intermediate_size: int, | |
| hidden_act: str, | |
| ): | |
| super().__init__() | |
| self.gate_proj = nn.Linear(hidden_size, intermediate_size, bias=False) | |
| self.down_proj = nn.Linear(intermediate_size, hidden_size, bias=False) | |
| self.up_proj = nn.Linear(hidden_size, intermediate_size, bias=False) | |
| self.act_fn = ACT2FN[hidden_act] | |
| def forward(self, x): | |
| return self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x)) | |
| class BaichuanAttention(nn.Module): | |
| def __init__(self, config: "BaichuanConfig"): | |
| super().__init__() | |
| self.config = config | |
| self.hidden_size = config.hidden_size | |
| self.num_heads = config.num_attention_heads | |
| self.head_dim = self.hidden_size // self.num_heads | |
| self.max_position_embeddings = config.model_max_length | |
| if (self.head_dim * self.num_heads) != self.hidden_size: | |
| raise ValueError( | |
| f"hidden_size {self.hidden_size} is not divisible by num_heads {self.num_heads}" | |
| ) | |
| # Layer-wise attention scaling | |
| self.inv_norm_factor = 1.0 / math.sqrt(self.head_dim) | |
| self.beta = 1.0 | |
| self.W_pack = nn.Linear(self.hidden_size, 3 * self.hidden_size, bias=False) | |
| self.o_proj = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=False) | |
| def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int): | |
| return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous() | |
| def forward( | |
| self, | |
| hidden_states: torch.Tensor, | |
| alibi: torch.Tensor, | |
| attention_mask: torch.Tensor, | |
| past_key_value: Optional[Tuple[torch.Tensor]] = None, | |
| output_attentions: bool = False, | |
| use_cache: bool = False, | |
| ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: | |
| bsz, q_len, _ = hidden_states.size() | |
| proj = self.W_pack(hidden_states) # [batch_size, seq_length, 3 x hidden_size] | |
| proj = proj.unflatten(-1, (3, self.hidden_size)).unsqueeze(0).transpose(0, -2).squeeze(-2) | |
| query_states = proj[0].view(bsz, q_len, self.num_heads, self.head_dim) | |
| key_states = proj[1].view(bsz, q_len, self.num_heads, self.head_dim) | |
| value_states = proj[2].view(bsz, q_len, self.num_heads, self.head_dim) | |
| query_states = query_states.transpose(1, 2).reshape(bsz * self.num_heads, q_len, self.head_dim) | |
| key_states = key_states.permute(0, 2, 3, 1).reshape(bsz * self.num_heads, self.head_dim, q_len) | |
| value_states = value_states.transpose(1, 2).reshape(bsz * self.num_heads, q_len, self.head_dim) | |
| if past_key_value is not None: | |
| # reuse k, v, self_attention | |
| past_key, past_value = past_key_value | |
| key_states = torch.cat([past_key, key_states], dim=2) | |
| value_states = torch.cat([past_value, value_states], dim=1) | |
| _, _, kv_seq_len = key_states.shape | |
| past_key_value = (key_states, value_states) if use_cache else None | |
| # [batch_size * num_heads, q_length, kv_length] | |
| # we use `torch.Tensor.baddbmm` instead of `torch.baddbmm` as the latter isn't supported by TorchScript v1.11 | |
| matmul_result = alibi.baddbmm( | |
| batch1=query_states, | |
| batch2=key_states, | |
| beta=self.beta, | |
| alpha=self.inv_norm_factor, | |
| ) | |
| # change view to [batch_size, num_heads, q_length, kv_length] | |
| attention_scores = matmul_result.view(bsz, self.num_heads, q_len, kv_seq_len) | |
| # cast attention scores to fp32, compute scaled softmax and cast back to initial dtype | |
| # [batch_size, num_heads, q_length, kv_length] | |
| input_dtype = attention_scores.dtype | |
| # `float16` has a minimum value of -65504.0, whereas `bfloat16` and `float32` have a minimum value of `-3.4e+38` | |
| if input_dtype == torch.float16: | |
| attention_scores = attention_scores.to(torch.float) | |
| attn_weights = torch.masked_fill(attention_scores, attention_mask, torch.finfo(attention_scores.dtype).min) | |
| attention_probs = F.softmax(attn_weights, dim=-1, dtype=torch.float32).to(input_dtype) | |
| # change view [batch_size x num_heads, q_length, kv_length] | |
| attention_probs_reshaped = attention_probs.view(bsz * self.num_heads, q_len, kv_seq_len) | |
| # matmul: [batch_size * num_heads, q_length, head_dim] | |
| attn_output = torch.bmm(attention_probs_reshaped, value_states) | |
| attn_output = attn_output.view(bsz, self.num_heads, q_len, self.head_dim) | |
| attn_output = attn_output.transpose(1, 2).reshape(bsz, q_len, self.hidden_size) | |
| attn_output = self.o_proj(attn_output) | |
| if not output_attentions: | |
| attention_probs = None | |
| return attn_output, attention_probs, past_key_value | |
| class BaichuanLayer(nn.Module): | |
| def __init__(self, config: "BaichuanConfig"): | |
| super().__init__() | |
| self.hidden_size = config.hidden_size | |
| self.self_attn = BaichuanAttention(config=config) | |
| self.mlp = MLP( | |
| hidden_size=self.hidden_size, | |
| intermediate_size=config.intermediate_size, | |
| hidden_act=config.hidden_act, | |
| ) | |
| self.input_layernorm = RMSNorm(config.hidden_size, epsilon=config.rms_norm_eps) | |
| self.post_attention_layernorm = RMSNorm(config.hidden_size, epsilon=config.rms_norm_eps) | |
| def forward( | |
| self, | |
| hidden_states: torch.Tensor, | |
| alibi: torch.Tensor, | |
| attention_mask: torch.Tensor, | |
| past_key_value: Optional[Tuple[torch.Tensor]] = None, | |
| output_attentions: Optional[bool] = False, | |
| use_cache: Optional[bool] = False, | |
| ) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]: | |
| residual = hidden_states | |
| hidden_states = self.input_layernorm(hidden_states) | |
| # Self Attention | |
| hidden_states, self_attn_weights, present_key_value = self.self_attn( | |
| hidden_states=hidden_states, | |
| alibi=alibi, | |
| attention_mask=attention_mask, | |
| past_key_value=past_key_value, | |
| output_attentions=output_attentions, | |
| use_cache=use_cache, | |
| ) | |
| hidden_states = residual + hidden_states | |
| # Fully Connected | |
| residual = hidden_states | |
| hidden_states = self.post_attention_layernorm(hidden_states) | |
| hidden_states = self.mlp(hidden_states) | |
| hidden_states = residual + hidden_states | |
| outputs = (hidden_states,) | |
| if output_attentions: | |
| outputs += (self_attn_weights,) | |
| if use_cache: | |
| outputs += (present_key_value,) | |
| return outputs | |
| class BaichuanPreTrainedModel(PreTrainedModel): | |
| config_class = BaichuanConfig | |
| base_model_prefix = "model" | |
| supports_gradient_checkpointing = True | |
| _no_split_modules = ["BaichuanLayer"] | |
| _skip_keys_device_placement = "past_key_values" | |
| _keys_to_ignore_on_load_unexpected = [r"decoder\.version"] | |
| def _init_weights(self, module): | |
| std = self.config.initializer_range | |
| if isinstance(module, nn.Linear): | |
| module.weight.data.normal_(mean=0.0, std=std) | |
| if module.bias is not None: | |
| module.bias.data.zero_() | |
| elif isinstance(module, nn.Embedding): | |
| module.weight.data.normal_(mean=0.0, std=std) | |
| if module.padding_idx is not None: | |
| module.weight.data[module.padding_idx].zero_() | |
| def _set_gradient_checkpointing(self, module, value=False): | |
| if isinstance(module, BaichuanModel): | |
| module.gradient_checkpointing = value | |
| def _convert_to_standard_cache( | |
| past_key_value: Tuple[Tuple[torch.Tensor, torch.Tensor]], batch_size: int | |
| ) -> Tuple[Tuple[torch.Tensor, torch.Tensor]]: | |
| """ | |
| Standardizes the format of the cache so as to match most implementations, i.e. to tuple(tuple([batch_size, | |
| num_heads, ...])) | |
| """ | |
| batch_size_times_num_heads, head_dim, seq_length = past_key_value[0][0].shape | |
| num_heads = batch_size_times_num_heads // batch_size | |
| # key: [batch_size * num_heads, head_dim, seq_length] -> [batch_size, num_heads, head_dim, seq_length] | |
| # value: [batch_size * num_heads, seq_length, head_dim] -> [batch_size, num_heads, seq_length, head_dim] | |
| return tuple( | |
| ( | |
| layer_past[0].view(batch_size, num_heads, head_dim, seq_length), | |
| layer_past[1].view(batch_size, num_heads, seq_length, head_dim), | |
| ) | |
| for layer_past in past_key_value | |
| ) | |
| def _convert_to_baichuan_cache( | |
| past_key_value: Tuple[Tuple[torch.Tensor, torch.Tensor]] | |
| ) -> Tuple[Tuple[torch.Tensor, torch.Tensor]]: | |
| """ | |
| Converts the cache to the format expected by Baichuan, i.e. to tuple(tuple([batch_size * num_heads, ...])) | |
| """ | |
| batch_size, num_heads, head_dim, seq_length = past_key_value[0][0].shape | |
| batch_size_times_num_heads = batch_size * num_heads | |
| # key: [batch_size, num_heads, head_dim, seq_length] -> [batch_size * num_heads, head_dim, seq_length] | |
| # value: [batch_size, num_heads, seq_length, head_dim] -> [batch_size * num_heads, seq_length, head_dim] | |
| return tuple( | |
| ( | |
| layer_past[0].view(batch_size_times_num_heads, head_dim, seq_length), | |
| layer_past[1].view(batch_size_times_num_heads, seq_length, head_dim), | |
| ) | |
| for layer_past in past_key_value | |
| ) | |
| class BaichuanModel(BaichuanPreTrainedModel): | |
| def __init__(self, config: "BaichuanConfig"): | |
| super().__init__(config) | |
| self.padding_idx = config.pad_token_id | |
| self.vocab_size = config.vocab_size | |
| self.n_head = config.num_attention_heads | |
| self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx) | |
| self.layers = nn.ModuleList([BaichuanLayer(config) for _ in range(config.num_hidden_layers)]) | |
| self.norm = RMSNorm(config.hidden_size, epsilon=config.rms_norm_eps) | |
| self.gradient_checkpointing = config.gradient_checkpointing | |
| self.post_init() | |
| def get_input_embeddings(self): | |
| return self.embed_tokens | |
| def set_input_embeddings(self, value): | |
| self.embed_tokens = value | |
| def build_alibi_tensor(self, attention_mask: torch.Tensor, num_heads: int, dtype: torch.dtype) -> torch.Tensor: | |
| return build_alibi_tensor(attention_mask, num_heads, dtype) | |
| def _prepare_attn_mask( | |
| self, attention_mask: torch.Tensor, input_shape: Tuple[int, int], past_key_values_length: int | |
| ) -> torch.BoolTensor: | |
| # create causal mask | |
| # [batch_size, seq_length] -> [batch_size, 1, tgt_length, src_length] | |
| combined_attention_mask = None | |
| device = attention_mask.device | |
| _, src_length = input_shape | |
| if src_length > 1: | |
| combined_attention_mask = _make_causal_mask( | |
| input_shape, device=device, past_key_values_length=past_key_values_length | |
| ) | |
| # [batch_size, seq_length] -> [batch_size, 1, tgt_length, src_length] | |
| expanded_attn_mask = _expand_mask(attention_mask, tgt_length=src_length) | |
| combined_attention_mask = ( | |
| expanded_attn_mask if combined_attention_mask is None else expanded_attn_mask | combined_attention_mask | |
| ) | |
| return combined_attention_mask | |
| def forward( | |
| self, | |
| input_ids: torch.LongTensor = None, | |
| attention_mask: Optional[torch.Tensor] = None, | |
| past_key_values: Optional[List[torch.FloatTensor]] = None, | |
| inputs_embeds: Optional[torch.FloatTensor] = None, | |
| use_cache: Optional[bool] = None, | |
| output_attentions: Optional[bool] = None, | |
| output_hidden_states: Optional[bool] = None, | |
| return_dict: Optional[bool] = None, | |
| ) -> Union[Tuple, BaseModelOutputWithPast]: | |
| output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions | |
| output_hidden_states = ( | |
| output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states | |
| ) | |
| use_cache = use_cache if use_cache is not None else self.config.use_cache | |
| return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
| if input_ids is not None and inputs_embeds is not None: | |
| raise ValueError("You cannot provide both input_ids and inputs_embeds simultaneously") | |
| elif input_ids is not None: | |
| batch_size, seq_length = input_ids.shape | |
| elif inputs_embeds is not None: | |
| batch_size, seq_length, _ = inputs_embeds.shape | |
| else: | |
| raise ValueError("You need to provide input_ids or inputs_embeds") | |
| seq_length_with_past = seq_length | |
| past_key_values_length = 0 | |
| if past_key_values is not None: | |
| past_key_values_length = past_key_values[0][0].shape[1] | |
| seq_length_with_past = seq_length_with_past + past_key_values_length | |
| if inputs_embeds is None: | |
| inputs_embeds = self.embed_tokens(input_ids) | |
| hidden_states = inputs_embeds | |
| if attention_mask is None: | |
| attention_mask = torch.ones((batch_size, seq_length_with_past), device=hidden_states.device) | |
| else: | |
| attention_mask = attention_mask.to(hidden_states.device) | |
| if self.gradient_checkpointing and self.training: | |
| if use_cache: | |
| logger.warning_once( | |
| "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..." | |
| ) | |
| use_cache = False | |
| # Compute alibi tensor: check build_alibi_tensor documentation | |
| alibi = self.build_alibi_tensor(attention_mask, self.n_head, dtype=hidden_states.dtype) | |
| causal_mask = self._prepare_attn_mask( | |
| attention_mask, | |
| input_shape=(batch_size, seq_length), | |
| past_key_values_length=past_key_values_length, | |
| ) | |
| # decoder layers | |
| all_hidden_states = () if output_hidden_states else None | |
| all_self_attns = () if output_attentions else None | |
| next_decoder_cache = () if use_cache else None | |
| for idx, decoder_layer in enumerate(self.layers): | |
| if output_hidden_states: | |
| all_hidden_states += (hidden_states,) | |
| past_key_value = past_key_values[idx] if past_key_values is not None else None | |
| if self.gradient_checkpointing and self.training: | |
| def create_custom_forward(module): | |
| def custom_forward(*inputs): | |
| # None for past_key_value | |
| return module(*inputs, output_attentions, None) | |
| return custom_forward | |
| layer_outputs = torch.utils.checkpoint.checkpoint( | |
| create_custom_forward(decoder_layer), | |
| hidden_states, | |
| alibi, | |
| causal_mask, | |
| None, | |
| ) | |
| else: | |
| layer_outputs = decoder_layer( | |
| hidden_states, | |
| alibi=alibi, | |
| attention_mask=causal_mask, | |
| past_key_value=past_key_value, | |
| output_attentions=output_attentions, | |
| use_cache=use_cache, | |
| ) | |
| hidden_states = layer_outputs[0] | |
| if use_cache: | |
| next_decoder_cache += (layer_outputs[2 if output_attentions else 1],) | |
| if output_attentions: | |
| all_self_attns += (layer_outputs[1],) | |
| hidden_states = self.norm(hidden_states) | |
| # add hidden states from the last decoder layer | |
| if output_hidden_states: | |
| all_hidden_states += (hidden_states,) | |
| next_cache = next_decoder_cache if use_cache else None | |
| if not return_dict: | |
| return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None) | |
| return BaseModelOutputWithPast( | |
| last_hidden_state=hidden_states, | |
| past_key_values=next_cache, | |
| hidden_states=all_hidden_states, | |
| attentions=all_self_attns, | |
| ) | |
| class BaichuanForCausalLM(BaichuanPreTrainedModel): | |
| def __init__(self, config): | |
| super().__init__(config) | |
| self.model = BaichuanModel(config) | |
| self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False) | |
| # Initialize weights and apply final processing | |
| self.post_init() | |
| def get_input_embeddings(self): | |
| return self.model.embed_tokens | |
| def set_input_embeddings(self, value): | |
| self.model.embed_tokens = value | |
| def get_output_embeddings(self): | |
| return self.lm_head | |
| def set_output_embeddings(self, new_embeddings): | |
| self.lm_head = new_embeddings | |
| def set_decoder(self, decoder): | |
| self.model = decoder | |
| def get_decoder(self): | |
| return self.model | |
| def forward( | |
| self, | |
| input_ids: torch.LongTensor = None, | |
| attention_mask: Optional[torch.Tensor] = None, | |
| past_key_values: Optional[List[torch.FloatTensor]] = None, | |
| inputs_embeds: Optional[torch.FloatTensor] = None, | |
| labels: Optional[torch.LongTensor] = None, | |
| use_cache: Optional[bool] = None, | |
| output_attentions: Optional[bool] = None, | |
| output_hidden_states: Optional[bool] = None, | |
| return_dict: Optional[bool] = None, | |
| **kwargs | |
| ) -> Union[Tuple, CausalLMOutputWithPast]: | |
| output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions | |
| output_hidden_states = ( | |
| output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states | |
| ) | |
| return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
| # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn) | |
| outputs = self.model( | |
| input_ids=input_ids, | |
| attention_mask=attention_mask, | |
| past_key_values=past_key_values, | |
| inputs_embeds=inputs_embeds, | |
| use_cache=use_cache, | |
| output_attentions=output_attentions, | |
| output_hidden_states=output_hidden_states, | |
| return_dict=return_dict, | |
| ) | |
| hidden_states = outputs[0] | |
| logits = self.lm_head(hidden_states) | |
| loss = None | |
| if labels is not None: | |
| # Shift so that tokens < n predict n | |
| shift_logits = logits[..., :-1, :].contiguous() | |
| shift_labels = labels[..., 1:].contiguous() | |
| # Flatten the tokens | |
| loss_fct = CrossEntropyLoss() | |
| shift_logits = shift_logits.view(-1, self.config.vocab_size) | |
| shift_labels = shift_labels.view(-1) | |
| # Enable model parallelism | |
| shift_labels = shift_labels.to(shift_logits.device) | |
| loss = loss_fct(shift_logits, shift_labels) | |
| if not return_dict: | |
| output = (logits,) + outputs[1:] | |
| return (loss,) + output if loss is not None else output | |
| return CausalLMOutputWithPast( | |
| loss=loss, | |
| logits=logits, | |
| past_key_values=outputs.past_key_values, | |
| hidden_states=outputs.hidden_states, | |
| attentions=outputs.attentions, | |
| ) | |
| def prepare_inputs_for_generation( | |
| self, | |
| input_ids: torch.LongTensor, | |
| past_key_values: Optional[torch.Tensor] = None, | |
| attention_mask: Optional[torch.Tensor] = None, | |
| inputs_embeds: Optional[torch.Tensor] = None, | |
| **kwargs | |
| ) -> dict: | |
| if past_key_values: | |
| input_ids = input_ids[:, -1:] | |
| # the cache may be in the standard format (e.g. in contrastive search) | |
| if past_key_values[0][0].shape[0] == input_ids.shape[0]: | |
| past_key_values = self._convert_to_baichuan_cache(past_key_values) | |
| # if `inputs_embeds` are passed, we only want to use them in the 1st generation step | |
| if inputs_embeds is not None and past_key_values is None: | |
| model_inputs = {"inputs_embeds": inputs_embeds} | |
| else: | |
| model_inputs = {"input_ids": input_ids} | |
| model_inputs.update( | |
| { | |
| "past_key_values": past_key_values, | |
| "use_cache": kwargs.get("use_cache"), | |
| "attention_mask": attention_mask, | |
| } | |
| ) | |
| return model_inputs | |
| def _reorder_cache( | |
| self, past: Tuple[Tuple[torch.Tensor, torch.Tensor], ...], beam_idx: torch.LongTensor | |
| ) -> Tuple[Tuple[torch.Tensor, torch.Tensor], ...]: | |
| """ | |
| This function is used to re-order the `past_key_values` cache if [`~PreTrainedModel.beam_search`] or | |
| [`~PreTrainedModel.beam_sample`] is called. This is required to match `past_key_values` with the correct | |
| beam_idx at every generation step. | |
| Output shares the same memory storage as `past`. | |
| """ | |
| standardized_past = self._convert_to_standard_cache(past, batch_size=len(beam_idx)) | |
| # Get a copy of `beam_idx` on all the devices where we need those indices. | |
| device_to_beam_idx = { | |
| past_state.device: beam_idx.to(past_state.device) for layer_past in past for past_state in layer_past | |
| } | |
| reordered_past = tuple( | |
| ( | |
| layer_past[0].index_select(0, device_to_beam_idx[layer_past[0].device]), | |
| layer_past[1].index_select(0, device_to_beam_idx[layer_past[0].device]), | |
| ) | |
| for layer_past in standardized_past | |
| ) | |
| return self._convert_to_baichuan_cache(reordered_past) | |