Spaces:
Sleeping
Sleeping
File size: 7,541 Bytes
a622ce1 63d743d a622ce1 f78c2b3 a622ce1 63d743d a622ce1 f78c2b3 a622ce1 63d743d a622ce1 63d743d a622ce1 f78c2b3 a622ce1 f78c2b3 a622ce1 63d743d a622ce1 f78c2b3 a622ce1 f78c2b3 a622ce1 f78c2b3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 |
import gradio as gr
import torch
import numpy as np
import cv2
from PIL import Image
from transformers import AutoProcessor, AutoModelForDepthEstimation
import tempfile
from stl import mesh
from sklearn.decomposition import PCA
import pillow_heif
pillow_heif.register_heif_opener()
MAX_RESOLUTION = 1.5e6
MODEL_ID = "depth-anything/Depth-Anything-V2-Large-hf"
device = "cuda" if torch.cuda.is_available() else "cpu"
processor = AutoProcessor.from_pretrained(MODEL_ID, use_fast=True)
model = AutoModelForDepthEstimation.from_pretrained(MODEL_ID).to(device)
print("Model loaded successfully.")
def create_3d_model(
input_filepath: str,
texture_strength: float,
max_z: float,
min_z: float,
x_length: float,
do_pca_correction: bool,
depth_map_smoothing: int,
texture_smoothing: int,
close_body: int
):
if input_filepath is None: raise gr.Error("Please upload an image.")
if max_z <= min_z: raise gr.Error("Max Z-height must be greater than Min Z-height.")
try:
image_pil = Image.open(input_filepath)
input_image = np.array(image_pil.convert("RGB"))
except Exception as e:
raise gr.Error(f"Could not open image file. Error: {e}")
# resize large images
h, w, _ = input_image.shape
if h * w > MAX_RESOLUTION:
gr.Info("Image is large, downsampling to improve performance...")
ratio = (MAX_RESOLUTION / (h * w)) ** 0.5
new_w, new_h = int(w * ratio), int(h * ratio)
input_image = cv2.resize(input_image, (new_w, new_h), interpolation=cv2.INTER_AREA)
image = Image.fromarray(input_image).convert("RGB")
with torch.no_grad():
inputs = processor(images=image, return_tensors="pt").to(device)
outputs = model(**inputs)
predicted_depth = outputs.predicted_depth
depth = torch.nn.functional.interpolate(
predicted_depth.unsqueeze(1), size=(image.height, image.width),
mode="bicubic", align_corners=False,
).squeeze().cpu().numpy()
depth_normalized = (depth - depth.min()) / (depth.max() - depth.min())
# smoothing base depthmap
if depth_map_smoothing > 1:
ksize = int(depth_map_smoothing)
if ksize % 2 == 0: ksize += 1
depth_normalized = cv2.GaussianBlur(depth_normalized, (ksize, ksize), 0)
gray_image = cv2.cvtColor(input_image, cv2.COLOR_RGB2GRAY)
brightness_normalized = gray_image.astype(float) / 255.0
# smoothing brightness
if texture_smoothing > 1:
ksize = int(texture_smoothing)
if ksize % 2 == 0: ksize += 1
brightness_normalized = cv2.GaussianBlur(brightness_normalized, (ksize, ksize), 0)
if brightness_normalized.shape != depth_normalized.shape:
brightness_normalized = cv2.resize(
brightness_normalized, (depth_normalized.shape[1], depth_normalized.shape[0]),
interpolation=cv2.INTER_LINEAR
)
combined_map = depth_normalized + (brightness_normalized * texture_strength)
c_min, c_max = combined_map.min(), combined_map.max()
if c_max > c_min:
combined_map_rescaled = (combined_map - c_min) / (c_max - c_min)
else:
combined_map_rescaled = np.zeros_like(combined_map)
z_data = min_z + combined_map_rescaled * (max_z - min_z)
# Planar correction with PCA
if do_pca_correction:
height, width = z_data.shape
y_length = x_length * (height / width)
x_coords_1d, y_coords_1d = np.linspace(0, x_length, width), np.linspace(y_length, 0, height)
x_grid, y_grid = np.meshgrid(x_coords_1d, y_coords_1d)
points = np.stack([x_grid.flatten(), y_grid.flatten(), z_data.flatten()], axis=1)
n_points, n_samples = points.shape[0], min(points.shape[0], 50000)
sample_indices = np.random.choice(n_points, n_samples, replace=False)
pca = PCA(n_components=3)
pca.fit(points[sample_indices])
normal = pca.components_[2]
if normal[2] < 0:
normal *= -1
p0 = pca.mean_
z_plane = p0[2] - (normal[0] * (x_grid - p0[0]) + normal[1] * (y_grid - p0[1])) / normal[2]
corrected_z = z_data - z_plane
cz_min, cz_max = corrected_z.min(), corrected_z.max()
if cz_max > cz_min:
z_data = min_z + (corrected_z - cz_min) / (cz_max - cz_min) * (max_z - min_z)
# STL mesh
height, width = z_data.shape
y_length = x_length * (height / width)
vertices = np.zeros((height, width, 3))
x_coords, y_coords = np.linspace(0, x_length, width), np.linspace(y_length, 0, height)
vertices[:, :, 0], vertices[:, :, 1], vertices[:, :, 2] = x_coords[np.newaxis, :], y_coords[:, np.newaxis], z_data
faces = []
for i in range(height-1):
for j in range(width-1):
v1,v2,v3,v4 = vertices[i,j], vertices[i+1,j], vertices[i+1,j+1], vertices[i,j+1]
faces.extend([[v1, v2, v3], [v1, v3, v4]])
if close_body:
v_tl, v_tr, v_bl, v_br = vertices[0,0], vertices[0,width-1], vertices[height-1,0], vertices[height-1,width-1]
b_tl,b_tr,b_bl,b_br = np.array([v_tl[0],v_tl[1],0]), np.array([v_tr[0],v_tr[1],0]), np.array([v_bl[0],v_bl[1],0]), np.array([v_br[0],v_br[1],0])
faces.extend([
[v_tl, b_tl, b_tr], [v_tl, b_tr, v_tr], #top wall
[v_br, b_br, b_bl], [v_br, b_bl, v_bl], #bottom wall
[v_bl, b_bl, b_tl], [v_bl, b_tl, v_tl], #left
[v_tr, b_tr, b_br], [v_tr, b_br, v_br], #right
[b_tl, b_br, b_bl], [b_tl, b_tr, b_br] #base
])
surface = mesh.Mesh(np.zeros(len(faces), dtype=mesh.Mesh.dtype))
surface.vectors = np.array(faces)
with tempfile.NamedTemporaryFile(delete=False, suffix=".stl") as tmpfile:
surface.save(tmpfile.name)
return tmpfile.name, tmpfile.name
with gr.Blocks(theme='base') as demo:
gr.Markdown("# Image to 3D Relief Generator")
with gr.Row():
with gr.Column(scale=1):
input_image = gr.Image(type="filepath", label="Upload Image")
gr.Markdown("### Model Parameters")
texture_strength = gr.Slider(minimum=0.0, maximum=1.0, value=0.1, step=0.001, label="Brightness Texture Strength")
depth_map_smoothing = gr.Slider(minimum=0, maximum=51, value=0, step=1, label="Depth Map Smoothing", info="Smooths the base geometry. 0 = none.")
texture_smoothing = gr.Slider(minimum=0, maximum=51, value=0, step=1, label="Texture Smoothing", info="Smooths the brightness texture. 0 = none.")
x_length = gr.Number(value=100, label="X Length (units)")
min_z = gr.Number(value=0.5, label="Min Z-Height (units)")
max_z = gr.Number(value=5.0, label="Max Z-Height (units)")
do_pca = gr.Checkbox(value=True, label="Enable PCA Planar Correction")
close_body = gr.Checkbox(value=False, label="Close Body")
generate_btn = gr.Button("Generate STL", variant="primary")
with gr.Column(scale=1):
gr.Markdown("### 3D Model Output")
output_model = gr.Model3D(label="Generated 3D Model")
output_file = gr.File(label="Download STL File")
generate_btn.click(
fn=create_3d_model,
inputs=[
input_image, texture_strength, max_z, min_z, x_length, do_pca,
depth_map_smoothing, texture_smoothing, close_body
],
outputs=[output_model, output_file]
)
if __name__ == "__main__":
demo.launch(server_name="0.0.0.0", server_port=7860)
|