Spaces:
Runtime error
Runtime error
| import base64 | |
| from io import BytesIO | |
| import gradio as gr | |
| import torch | |
| from transformers import BlipForConditionalGeneration, BlipProcessor | |
| from modules import chat, shared, ui_chat | |
| from modules.ui import gather_interface_values | |
| from modules.utils import gradio | |
| input_hijack = { | |
| 'state': False, | |
| 'value': ["", ""] | |
| } | |
| processor = BlipProcessor.from_pretrained("Salesforce/blip-image-captioning-base") | |
| model = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-base", torch_dtype=torch.float32).to("cpu") | |
| def chat_input_modifier(text, visible_text, state): | |
| global input_hijack | |
| if input_hijack['state']: | |
| input_hijack['state'] = False | |
| return input_hijack['value'] | |
| else: | |
| return text, visible_text | |
| def caption_image(raw_image): | |
| inputs = processor(raw_image.convert('RGB'), return_tensors="pt").to("cpu", torch.float32) | |
| out = model.generate(**inputs, max_new_tokens=100) | |
| return processor.decode(out[0], skip_special_tokens=True) | |
| def generate_chat_picture(picture, name1, name2): | |
| text = f'*{name1} sends {name2} a picture that contains the following: β{caption_image(picture)}β*' | |
| # lower the resolution of sent images for the chat, otherwise the log size gets out of control quickly with all the base64 values in visible history | |
| picture.thumbnail((300, 300)) | |
| buffer = BytesIO() | |
| picture.save(buffer, format="JPEG") | |
| img_str = base64.b64encode(buffer.getvalue()).decode('utf-8') | |
| visible_text = f'<img src="data:image/jpeg;base64,{img_str}" alt="{text}">' | |
| return text, visible_text | |
| def ui(): | |
| picture_select = gr.Image(label='Send a picture', type='pil') | |
| # Prepare the input hijack, update the interface values, call the generation function, and clear the picture | |
| picture_select.upload( | |
| lambda picture, name1, name2: input_hijack.update({ | |
| "state": True, | |
| "value": generate_chat_picture(picture, name1, name2) | |
| }), [picture_select, shared.gradio['name1'], shared.gradio['name2']], None).then( | |
| gather_interface_values, gradio(shared.input_elements), gradio('interface_state')).then( | |
| chat.generate_chat_reply_wrapper, gradio(ui_chat.inputs), gradio('display', 'history'), show_progress=False).then( | |
| lambda: None, None, picture_select, show_progress=False) | |