File size: 13,097 Bytes
3ed0796
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
import math
from typing import Final, List, Optional, Tuple, Union


from einops import rearrange
from timm.models import register_model
import torch
from torch import Type, nn
from torch.nn import functional as F
from torch.nn.init import xavier_normal_, xavier_uniform_, zeros_

from .forward_intermediates import forward_intermediates


def _get_init_scale(num_encoder_layers: int, num_decoder_layers: int, is_encoder: bool):
    if num_encoder_layers > 0 and num_decoder_layers == 0:
        return math.sqrt(math.log(2 * num_encoder_layers))
    if num_decoder_layers > 0 and num_encoder_layers == 0:
        return math.sqrt(math.log(2 * num_decoder_layers))
    if is_encoder:
        # Both encoders and decoders
        return math.sqrt(
            0.33 * math.log(3 * num_decoder_layers) * math.log(2 * num_encoder_layers)
        )

    return math.sqrt(math.log(3 * num_decoder_layers))


# [1,2]    [1,1,2,2]
# [3,4] -> [3,3,4,4]
# [5,6]    [5,5,6,6]
def duplicate_interleave(m):
    return m.view(-1, 1).repeat(1, 2).view(m.shape[0], -1)

# 0,1,2,3,4,5,6,7 -> -1,0,-3,2,-5,4,-7,6
def rotate_every_two(x):
    x1 = x[:, :, ::2]
    x2 = x[:, :, 1::2]
    x = torch.stack((-x2, x1), dim=-1)
    return x.flatten(-2)  # in einsum notation: rearrange(x, '... d j -> ... (d j)')\


class XPosEmbedding2D(torch.nn.Module):
    """Implementation of xPos based on RotaryEmbedding from GPT-NeoX.
    This implementation is designed to operate on queries and keys that are compatible with
    [batch_size, n_heads_per_partition, seq_len, head_dim] (e.g. MinGPTAttention format).
    """

    def __init__(
        self,
        head_dim: int,
        base=50000,
        scale_base=512
    ):
        super().__init__()
        half_dim = head_dim // 2
        self.half_dim = half_dim
        inv_freq = 1.0 / (base ** (torch.arange(0, half_dim, 2).float() / half_dim))
        self.register_buffer("inv_freq", inv_freq, persistent=False)
        self.head_dim = head_dim
        self.token_shape_cached = None
        self.batch_size_cached = None
        self.cos_cached: torch.Tensor | None = None
        self.sin_cached: torch.Tensor | None = None
        self.scale_cached: torch.Tensor | None = None
        self.scale_base = scale_base
        self.register_buffer("scale",
                             (torch.arange(0, half_dim, 2) + 0.4 * half_dim) / (1.4 * half_dim))

    def cos_sin(
        self,
        token_shape: Tuple[int, int],
        device="cuda",
        dtype=torch.bfloat16,
    ) -> torch.Tensor:
        if token_shape != self.token_shape_cached:
            self.token_shape_cached = token_shape
            y = torch.arange(token_shape[0], device=device, dtype=self.inv_freq.dtype)
            x = torch.arange(token_shape[1], device=device, dtype=self.inv_freq.dtype)
            x, y = torch.meshgrid(x, y, indexing='xy')

            y_freqs = torch.einsum("i,j->ij", y.flatten(), self.inv_freq)
            x_freqs = torch.einsum("i,j->ij", x.flatten(), self.inv_freq)

            y_scales = self.scale ** y.flatten().div(self.scale_base)[:, None]
            x_scales = self.scale ** x.flatten().div(self.scale_base)[:, None]

            freqs = torch.cat([y_freqs, x_freqs], dim=-1)
            emb = torch.repeat_interleave(freqs, repeats=2, dim=-1)

            scales = torch.cat([y_scales, x_scales], dim=-1)
            scales = torch.repeat_interleave(scales, repeats=2, dim=-1)

            if dtype in [torch.float16, torch.bfloat16]:
                emb = emb.float()

            self.cos_cached = emb.cos()[None, :, :]
            self.sin_cached = emb.sin()[None, :, :]
            self.scale_cached = scales[None, :, :]

            self.cos_cached = self.cos_cached.type(dtype)
            self.sin_cached = self.sin_cached.type(dtype)
            self.scale_cached = self.scale_cached.type(dtype)

        return self.cos_cached, self.sin_cached, self.scale_cached

    def forward(self, q: torch.Tensor, k: torch.Tensor, token_shape: Tuple[int, int]):
        batch, seq_len, head_dim = q.shape
        cos, sin, scale = self.cos_sin(token_shape, q.device, q.dtype)
        # scale = self.scale**torch.arange(seq_len).to(self.scale).div(self.scale_base)[:, None]
        # scale = torch.repeat_interleave(scale, 2, dim=-1).to(q.device)
        # scale = torch.cat([scale, scale], dim=-1)
        # scale = 1
        return (
            (q * cos * scale) + (rotate_every_two(q) * sin * scale),
            (k * cos * (1 / scale)) + (rotate_every_two(k) * sin * (1 / scale)),
        )


class MagnetoAttention(nn.Module):
    def __init__(self, d_model: int, n_head: int, pos_emb: XPosEmbedding2D):
        super().__init__()
        self.num_heads = n_head
        self.head_dim = d_model // n_head
        self.scale = self.head_dim ** -0.5

        self.qkv = nn.Linear(d_model, d_model * 3, bias=False)
        self.proj = nn.Linear(d_model, d_model)
        self.pos_emb = pos_emb

        self.norm0 = nn.LayerNorm(d_model)
        self.norm1 = nn.LayerNorm(d_model)

    def forward(self, x: torch.Tensor, num_prefix_tokens: int, patch_shape: Tuple[int, int]) -> torch.Tensor:
        B, N, C = x.shape
        x = self.norm0(x)

        qkv = self.qkv(x).reshape(B, N, 3, C).permute(2, 0, 1, 3)
        q, k, v = qkv.unbind(0)

        q_pref = q[:, :num_prefix_tokens]
        q_patch = q[:, num_prefix_tokens:]

        k_pref = k[:, :num_prefix_tokens]
        k_patch = k[:, num_prefix_tokens:]

        q_patch, k_patch = self.pos_emb(q_patch, k_patch, patch_shape)

        q = torch.cat([q_pref, q_patch], dim=1)
        k = torch.cat([k_pref, k_patch], dim=1)

        def head_reshape(t: torch.Tensor):
            return t.reshape(B, N, self.num_heads, self.head_dim).permute(0, 2, 1, 3)

        q = head_reshape(q)
        k = head_reshape(k)
        v = head_reshape(v)

        x = F.scaled_dot_product_attention(q, k, v)
        x = x.transpose(1, 2).reshape(B, N, C)
        x = self.norm1(x)
        x = self.proj(x)
        return x

    def _reset_parameters(self):
        xavier_uniform_(self.qkv.weight)
        if self.qkv.bias is not None:
            zeros_(self.qkv.bias)
        xavier_normal_(self.proj.weight)
        zeros_(self.proj.bias)


class MagnetoTransformerEncoderLayer(nn.Module):
    def __init__(self, d_model: int, nhead: int, pos_emb: XPosEmbedding2D,
                 num_encoder_layers: int, num_decoder_layers: int = 0,
                 dim_mhsa: int = 0,
                 dim_feedforward: int = 2048,
                 layer_norm_eps: float = 1e-5,
                 batch_first: bool = True):
        super().__init__()

        if dim_mhsa == 0:
            dim_mhsa = d_model

        self._num_encoder_layers = num_encoder_layers
        self._num_decoder_layers = num_decoder_layers

        self.attn = MagnetoAttention(d_model, nhead, pos_emb)

        self.norm2 = nn.LayerNorm(d_model, eps=layer_norm_eps)
        self.linear2 = nn.Linear(d_model, dim_feedforward)
        self.norm3 = nn.LayerNorm(dim_feedforward, eps=layer_norm_eps)
        self.linear3 = nn.Linear(dim_feedforward, d_model)

    def initialize(self):
        gamma = _get_init_scale(self._num_encoder_layers, self._num_decoder_layers, is_encoder=True)

        # Magneto Initialization
        for mod in self.children():
            if isinstance(mod, nn.Linear):
                xavier_normal_(mod.weight.data, gamma)
            elif isinstance(mod, MagnetoAttention):
                mod._reset_parameters()

    def forward(self, x: torch.Tensor, num_prefix_tokens: int, patch_shape: Tuple[int, int]) -> torch.Tensor:
        x = x + self._sa_block(x, num_prefix_tokens, patch_shape)
        x = x + self._ff_block(x)
        return x

    def _sa_block(self, x: torch.Tensor, num_prefix_tokens: int, patch_shape: Tuple[int, int]) -> torch.Tensor:
        x = self.attn(x, num_prefix_tokens, patch_shape)
        return x

    def _ff_block(self, x: torch.Tensor) -> torch.Tensor:
        x = self.norm2(x)
        x = self.linear2(x)
        x = F.gelu(x)
        x = self.norm3(x)
        x = self.linear3(x)
        return x


class VisionTransformer(nn.Module):
    """ Vision Transformer

    A PyTorch impl of : `An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale`
        - https://arxiv.org/abs/2010.11929
    """
    dynamic_img_size: Final[bool]

    def __init__(
            self,
            patch_size: Union[int, Tuple[int, int]] = 16,
            in_chans: int = 3,
            embed_dim: int = 768,
            depth: int = 12,
            num_heads: int = 12,
            mlp_ratio: float = 4.,
            num_cls_tokens: int = 1,
            num_reg_tokens: int = 0,
    ) -> None:
        """
        Args:
            patch_size: Patch size.
            in_chans: Number of image input channels.
            embed_dim: Transformer embedding dimension.
            depth: Depth of transformer.
            num_heads: Number of attention heads.
            mlp_ratio: Ratio of mlp hidden dim to embedding dim.
            num_cls_tokens: Number of cls tokens
            num_reg_tokens: Number of register tokens.
            block_fn: Transformer block layer.
        """
        super().__init__()

        self.patch_size = patch_size
        self.embed_dim = embed_dim
        self.num_cls_tokens = num_cls_tokens
        self.num_reg_tokens = num_reg_tokens

        self.patch_embed = nn.Conv2d(in_chans, embed_dim, kernel_size=patch_size, stride=patch_size)

        self.prefix_buffer = nn.Parameter(torch.randn(1, self.num_prefix_tokens, embed_dim) * .02)

        pos_emb = XPosEmbedding2D(embed_dim)

        self.blocks = nn.ModuleList([
            MagnetoTransformerEncoderLayer(
                d_model=embed_dim,
                nhead=num_heads,
                num_encoder_layers=depth,
                num_decoder_layers=0,
                dim_feedforward=int(embed_dim * mlp_ratio),
                pos_emb=pos_emb,
            )
            for _ in range(depth)
        ])

        for block in self.blocks:
            block.initialize()

    @property
    def num_prefix_tokens(self):
        return self.num_cls_tokens + self.num_reg_tokens

    @property
    def num_summary_tokens(self):
        return self.num_prefix_tokens

    def forward_features(self, x: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]:
        x, patch_shape = self._patchify(x)

        for block in self.blocks:
            x = block(x, self.num_prefix_tokens, patch_shape)

        summary = x[:, :self.num_cls_tokens]
        features = x[:, self.num_prefix_tokens:]

        return summary, features

    def forward_intermediates(self, x: torch.Tensor, norm: bool = False, **kwargs):
        patch_shape = tuple(d // self.patch_size for d in x.shape[-2:])

        def patch_extractor(x: torch.Tensor):
            x, _ = self._patchify(x)
            return x

        return forward_intermediates(
            self,
            patch_extractor=patch_extractor,
            num_summary_tokens=self.num_prefix_tokens,
            num_cls_tokens=self.num_cls_tokens,
            norm=lambda y: y,
            x=x,
            block_kwargs=dict(num_prefix_tokens=self.num_prefix_tokens, patch_shape=patch_shape),
            **kwargs,
        )

    def _patchify(self, x: torch.Tensor):
        x = self.patch_embed(x)
        patch_shape = x.shape[-2:]
        x = rearrange(x, 'b c h w -> b (h w) c')

        prefix = self.prefix_buffer.expand(x.shape[0], -1, -1)

        x = torch.cat([prefix, x], dim=1)
        return x, patch_shape


@register_model
def vit_base_patch16_xpos(num_cls_tokens: int = 1, num_reg_tokens: int = 0, **kwargs) -> VisionTransformer:
    return VisionTransformer(patch_size=16, embed_dim=768, depth=12, num_heads=12,
                             num_cls_tokens=num_cls_tokens, num_reg_tokens=num_reg_tokens)


@register_model
def vit_large_patch16_xpos(num_cls_tokens: int = 1, num_reg_tokens: int = 0, **kwargs) -> VisionTransformer:
    return VisionTransformer(patch_size=16, embed_dim=1024, depth=24, num_heads=16,
                             num_cls_tokens=num_cls_tokens, num_reg_tokens=num_reg_tokens)


@register_model
def vit_huge_patch16_xpos(num_cls_tokens: int = 1, num_reg_tokens: int = 0, **kwargs) -> VisionTransformer:
    return VisionTransformer(patch_size=16, embed_dim=1280, depth=32, num_heads=16,
                             num_cls_tokens=num_cls_tokens, num_reg_tokens=num_reg_tokens)


@register_model
def vit_giant_patch16_xpos(num_cls_tokens: int = 1, num_reg_tokens: int = 0, **kwargs) -> VisionTransformer:
    return VisionTransformer(patch_size=16, embed_dim=1408, depth=40, num_heads=16,
                             num_cls_tokens=num_cls_tokens, num_reg_tokens=num_reg_tokens)


@register_model
def vit_bigG_patch16_xpos(num_cls_tokens: int = 1, num_reg_tokens: int = 0, **kwargs) -> VisionTransformer:
    return VisionTransformer(patch_size=16, embed_dim=1664, depth=48, num_heads=16,
                             num_cls_tokens=num_cls_tokens, num_reg_tokens=num_reg_tokens)