File size: 2,020 Bytes
3ed0796
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
import os
import torch
from transformers import T5EncoderModel, Gemma3ForCausalLM, AutoTokenizer


# load text-encoder
def load_text_encoder(text_encoder_dir, device, weight_dtype):
    os.environ["TOKENIZERS_PARALLELISM"] = "true"
    tokenizer = AutoTokenizer.from_pretrained(text_encoder_dir)
    if "gemma" in text_encoder_dir:
        tokenizer.padding_side = "right"
        text_encoder = Gemma3ForCausalLM.from_pretrained(
            text_encoder_dir,
            attn_implementation="sdpa",
            device_map="cpu",
            dtype=weight_dtype,
        )
    elif "t5" in text_encoder_dir:
        text_encoder = T5EncoderModel.from_pretrained(
            text_encoder_dir,
            attn_implementation="sdpa",
            device_map="cpu",
            dtype=weight_dtype,
        )
    else:
        raise NotImplementedError
    # Set requires_grad to False for all parameters to avoid functorch issues
    # for param in text_encoder.parameters():
    #     param.requires_grad = False

    text_encoder.model = text_encoder.model.eval().to(device=device, dtype=weight_dtype)

    return text_encoder, tokenizer


def encode_prompt(
    tokenizer,
    text_encoder,
    device,
    weight_dtype,
    captions,
    use_last_hidden_state,
    max_seq_length=256,
):
    text_inputs = tokenizer(
        captions,
        padding="max_length",
        max_length=max_seq_length,
        truncation=True,
        return_tensors="pt",
    )
    text_input_ids = text_inputs.input_ids.to(device)
    prompt_masks = text_inputs.attention_mask.to(device)
    with torch.no_grad(), torch.autocast("cuda", dtype=weight_dtype):
        results = text_encoder(
            input_ids=text_input_ids,
            attention_mask=prompt_masks,
            output_hidden_states=True,
        )

        if use_last_hidden_state:
            prompt_embeds = results.last_hidden_state
        else:  # from Imagen paper
            prompt_embeds = results.hidden_states[-2]

    return prompt_embeds, prompt_masks