Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,26 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
| 2 |
+
|
| 3 |
+
model = AutoModelForCausalLM.from_pretrained("AdaptLLM/finance-LLM-13B")
|
| 4 |
+
tokenizer = AutoTokenizer.from_pretrained("AdaptLLM/finance-LLM-13B", use_fast=False)
|
| 5 |
+
|
| 6 |
+
|
| 7 |
+
# Put your input here:
|
| 8 |
+
user_input = '''Use this fact to answer the question: Title of each class Trading Symbol(s) Name of each exchange on which registered
|
| 9 |
+
Common Stock, Par Value $.01 Per Share MMM New York Stock Exchange
|
| 10 |
+
MMM Chicago Stock Exchange, Inc.
|
| 11 |
+
1.500% Notes due 2026 MMM26 New York Stock Exchange
|
| 12 |
+
1.750% Notes due 2030 MMM30 New York Stock Exchange
|
| 13 |
+
1.500% Notes due 2031 MMM31 New York Stock Exchange
|
| 14 |
+
|
| 15 |
+
Which debt securities are registered to trade on a national securities exchange under 3M's name as of Q2 of 2023?'''
|
| 16 |
+
|
| 17 |
+
# Simply use your input as the prompt for base models
|
| 18 |
+
prompt = user_input
|
| 19 |
+
|
| 20 |
+
inputs = tokenizer(prompt, return_tensors="pt", add_special_tokens=False).input_ids.to(model.device)
|
| 21 |
+
outputs = model.generate(input_ids=inputs, max_length=2048)[0]
|
| 22 |
+
|
| 23 |
+
answer_start = int(inputs.shape[-1])
|
| 24 |
+
pred = tokenizer.decode(outputs[answer_start:], skip_special_tokens=True)
|
| 25 |
+
|
| 26 |
+
print(f'### User Input:\n{user_input}\n\n### Assistant Output:\n{pred}')
|