Spaces:
Sleeping
Sleeping
he
Browse files
app.py
CHANGED
|
@@ -1,65 +1,52 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
-
from transformers import
|
|
|
|
| 3 |
import torch
|
| 4 |
|
| 5 |
-
# Determine device
|
| 6 |
-
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 7 |
|
| 8 |
-
|
| 9 |
|
| 10 |
try:
|
| 11 |
-
# Load
|
| 12 |
-
|
| 13 |
-
model_id,
|
| 14 |
-
device_map="auto",
|
| 15 |
-
torch_dtype=torch.float16,
|
| 16 |
-
low_cpu_mem_usage=True,
|
| 17 |
-
max_memory={0: "15GiB"} if torch.cuda.is_available() else None,
|
| 18 |
-
offload_folder="offload",
|
| 19 |
-
).eval()
|
| 20 |
-
|
| 21 |
-
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
| 22 |
tokenizer.pad_token = tokenizer.eos_token
|
| 23 |
-
tokenizer.model_max_length = 4096
|
| 24 |
|
|
|
|
|
|
|
|
|
|
| 25 |
except Exception as e:
|
| 26 |
print(f"Error loading model: {e}")
|
| 27 |
exit()
|
| 28 |
|
| 29 |
def generate_text_streaming(prompt, max_new_tokens=128):
|
| 30 |
-
inputs = tokenizer(
|
| 31 |
-
|
| 32 |
-
return_tensors="pt",
|
| 33 |
-
truncation=True,
|
| 34 |
-
max_length=4096 # Match model's context length
|
| 35 |
-
).to(model.device)
|
| 36 |
-
|
| 37 |
generated_tokens = []
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
if new_token == tokenizer.eos_token_id:
|
| 62 |
-
break
|
| 63 |
|
| 64 |
def respond(message, history, system_message, max_tokens):
|
| 65 |
# Build prompt with full history
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
+
from transformers import AutoTokenizer
|
| 3 |
+
import ctranslate2
|
| 4 |
import torch
|
| 5 |
|
| 6 |
+
# Determine device (ctranslate2 handles device placement internally)
|
| 7 |
+
device = "cuda" if torch.cuda.is_available() else "cpu" # Still useful for other ops
|
| 8 |
|
| 9 |
+
model_path = "mradermacher/TinyLlama-Friendly-Psychotherapist-GGUF" # Path to your GGUF model
|
| 10 |
|
| 11 |
try:
|
| 12 |
+
# 1. Load the tokenizer (same as before)
|
| 13 |
+
tokenizer = AutoTokenizer.from_pretrained(model_path)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 14 |
tokenizer.pad_token = tokenizer.eos_token
|
| 15 |
+
tokenizer.model_max_length = 4096
|
| 16 |
|
| 17 |
+
# 2. Load the ctranslate2 model
|
| 18 |
+
ct_model = ctranslate2.Translator(model_path) # Load the GGUF model
|
| 19 |
+
ct_model.eval()
|
| 20 |
except Exception as e:
|
| 21 |
print(f"Error loading model: {e}")
|
| 22 |
exit()
|
| 23 |
|
| 24 |
def generate_text_streaming(prompt, max_new_tokens=128):
|
| 25 |
+
inputs = tokenizer(prompt, return_tensors="pt", truncation=True, max_length=4096).to(device)
|
| 26 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 27 |
generated_tokens = []
|
| 28 |
+
|
| 29 |
+
for _ in range(max_new_tokens):
|
| 30 |
+
# ctranslate2 generation (adjust as needed)
|
| 31 |
+
outputs = ct_model.translate_batch(
|
| 32 |
+
inputs.input_ids.tolist(), # ctranslate2 needs list of token ids
|
| 33 |
+
max_length=1, # Generate one token at a time
|
| 34 |
+
beam_size=1, # Greedy decoding
|
| 35 |
+
).eval()
|
| 36 |
+
|
| 37 |
+
new_token_id = outputs[0][0][-1] # Extract the generated token ID
|
| 38 |
+
new_token = tokenizer.decode(new_token_id, skip_special_tokens=True)
|
| 39 |
+
|
| 40 |
+
if new_token_id == tokenizer.eos_token_id:
|
| 41 |
+
break
|
| 42 |
+
|
| 43 |
+
generated_tokens.append(new_token_id)
|
| 44 |
+
|
| 45 |
+
current_text = tokenizer.decode(generated_tokens, skip_special_tokens=True)
|
| 46 |
+
yield current_text
|
| 47 |
+
|
| 48 |
+
inputs["input_ids"] = torch.cat([inputs["input_ids"], torch.tensor([[new_token_id]], device=inputs["input_ids"].device)], dim=-1)
|
| 49 |
+
inputs["attention_mask"] = torch.cat([inputs["attention_mask"], torch.ones(1, 1, device=inputs["attention_mask"].device)], dim=-1)
|
|
|
|
|
|
|
|
|
|
| 50 |
|
| 51 |
def respond(message, history, system_message, max_tokens):
|
| 52 |
# Build prompt with full history
|