Spaces:
Paused
Paused
Update app.py
Browse files
app.py
CHANGED
|
@@ -3,7 +3,7 @@ import torch
|
|
| 3 |
import os
|
| 4 |
import logging
|
| 5 |
from datetime import datetime
|
| 6 |
-
from huggingface_hub import HfApi
|
| 7 |
from transformers import AutoConfig, AutoModel, AutoTokenizer
|
| 8 |
from optimum.onnxruntime import ORTQuantizer, ORTModelForCausalLM
|
| 9 |
from optimum.onnxruntime.configuration import AutoQuantizationConfig
|
|
@@ -13,10 +13,8 @@ import time
|
|
| 13 |
|
| 14 |
# --- 1. SETUP AND CONFIGURATION ---
|
| 15 |
|
| 16 |
-
# Setup basic logging
|
| 17 |
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
|
| 18 |
|
| 19 |
-
# Ensure the user has set their Hugging Face token in the Space secrets
|
| 20 |
HF_TOKEN = os.getenv("HF_TOKEN")
|
| 21 |
if not HF_TOKEN:
|
| 22 |
logging.warning("HF_TOKEN environment variable not set. Packaging and uploading will fail.")
|
|
@@ -35,15 +33,13 @@ def stage_1_analyze_model(model_id: str):
|
|
| 35 |
"""
|
| 36 |
log_stream = "[STAGE 1] Analyzing model...\n"
|
| 37 |
try:
|
| 38 |
-
config = AutoConfig.from_pretrained(model_id)
|
| 39 |
model_type = config.model_type
|
| 40 |
-
num_params = getattr(config, "num_hidden_layers", "N/A") * getattr(config, "hidden_size", 0) / 1e6 # A rough estimate
|
| 41 |
|
| 42 |
analysis_report = f"""
|
| 43 |
### Model Analysis Report
|
| 44 |
- **Model ID:** `{model_id}`
|
| 45 |
- **Architecture:** `{model_type}`
|
| 46 |
-
- **Estimated Parameters:** ~{num_params:.2f}M
|
| 47 |
"""
|
| 48 |
|
| 49 |
recommendation = ""
|
|
@@ -57,45 +53,30 @@ def stage_1_analyze_model(model_id: str):
|
|
| 57 |
recommendation = "**Recommendation:** Unrecognized architecture. The standard path of **Quantization -> ONNX Conversion** is a safe starting point."
|
| 58 |
|
| 59 |
log_stream += f"Analysis complete. Architecture: {model_type}.\n"
|
| 60 |
-
|
|
|
|
| 61 |
except Exception as e:
|
| 62 |
error_msg = f"Failed to analyze model '{model_id}'. Error: {e}"
|
| 63 |
logging.error(error_msg)
|
| 64 |
-
return log_stream + error_msg, "Could not analyze model. Please check the model ID and try again.", gr.
|
| 65 |
|
| 66 |
|
| 67 |
-
def stage_2_prune_model(model, prune_percentage: float
|
| 68 |
-
"""
|
| 69 |
-
Performs Stage 2: Structural Reduction via one-shot unstructured pruning.
|
| 70 |
-
"""
|
| 71 |
if prune_percentage == 0:
|
| 72 |
return model, "Skipped pruning as percentage was 0."
|
| 73 |
|
| 74 |
log_stream = "[STAGE 2] Pruning model...\n"
|
| 75 |
-
progress(0.25, desc="Applying Unstructured Pruning")
|
| 76 |
-
|
| 77 |
-
total_params = sum(p.numel() for p in model.parameters())
|
| 78 |
-
|
| 79 |
for name, module in model.named_modules():
|
| 80 |
if isinstance(module, torch.nn.Linear):
|
| 81 |
prune.l1_unstructured(module, name='weight', amount=prune_percentage / 100.0)
|
| 82 |
-
prune.remove(module, 'weight')
|
| 83 |
-
|
| 84 |
-
pruned_params = sum(p.numel() for p in model.parameters())
|
| 85 |
-
reduction = (total_params - pruned_params) / total_params * 100
|
| 86 |
|
| 87 |
-
log_stream += f"Pruning complete.
|
| 88 |
return model, log_stream
|
| 89 |
|
| 90 |
|
| 91 |
-
def stage_3_and_4_quantize_and_onnx(model_id: str
|
| 92 |
-
"""
|
| 93 |
-
Performs Stage 3 (Quantization) and Stage 4 (ONNX Conversion).
|
| 94 |
-
This version uses post-training dynamic quantization.
|
| 95 |
-
"""
|
| 96 |
log_stream = "[STAGE 3 & 4] Converting to ONNX and Quantizing...\n"
|
| 97 |
-
progress(0.5, desc="Exporting to ONNX")
|
| 98 |
-
|
| 99 |
try:
|
| 100 |
run_id = datetime.now().strftime("%Y%m%d-%H%M%S")
|
| 101 |
onnx_path = os.path.join(OUTPUT_DIR, f"{model_id.replace('/', '_')}-{run_id}-onnx")
|
|
@@ -104,16 +85,14 @@ def stage_3_and_4_quantize_and_onnx(model_id: str, progress):
|
|
| 104 |
main_export(model_id, output=onnx_path, task="auto", trust_remote_code=True)
|
| 105 |
log_stream += f"Successfully exported base model to ONNX at: {onnx_path}\n"
|
| 106 |
|
| 107 |
-
progress(0.7, desc="Applying Dynamic Quantization")
|
| 108 |
quantizer = ORTQuantizer.from_pretrained(onnx_path)
|
| 109 |
-
dqconfig = AutoQuantizationConfig.avx512_vnni(is_static=False, per_channel=False)
|
| 110 |
|
| 111 |
quantized_path = os.path.join(onnx_path, "quantized")
|
| 112 |
quantizer.quantize(save_dir=quantized_path, quantization_config=dqconfig)
|
| 113 |
|
| 114 |
log_stream += f"Successfully quantized model to: {quantized_path}\n"
|
| 115 |
return quantized_path, log_stream
|
| 116 |
-
|
| 117 |
except Exception as e:
|
| 118 |
error_msg = f"Failed during ONNX conversion/quantization. Error: {e}"
|
| 119 |
logging.error(error_msg, exc_info=True)
|
|
@@ -124,15 +103,9 @@ def stage_5_evaluate_and_package(
|
|
| 124 |
model_id: str,
|
| 125 |
optimized_model_path: str,
|
| 126 |
pipeline_log: str,
|
| 127 |
-
options: dict
|
| 128 |
-
progress
|
| 129 |
):
|
| 130 |
-
"""
|
| 131 |
-
Performs Stage 5: Evaluation, Packaging, and Uploading.
|
| 132 |
-
"""
|
| 133 |
log_stream = "[STAGE 5] Evaluating and Packaging...\n"
|
| 134 |
-
progress(0.9, desc="Evaluating performance")
|
| 135 |
-
|
| 136 |
try:
|
| 137 |
ort_model = ORTModelForCausalLM.from_pretrained(optimized_model_path)
|
| 138 |
tokenizer = AutoTokenizer.from_pretrained(model_id, trust_remote_code=True)
|
|
@@ -145,18 +118,16 @@ def stage_5_evaluate_and_package(
|
|
| 145 |
end_time = time.time()
|
| 146 |
|
| 147 |
latency = (end_time - start_time) * 1000
|
| 148 |
-
num_tokens = len(gen_tokens[0])
|
| 149 |
-
ms_per_token = latency / num_tokens
|
| 150 |
|
| 151 |
eval_report = f"- **Inference Latency:** {latency:.2f} ms\n"
|
| 152 |
eval_report += f"- **Speed:** {ms_per_token:.2f} ms/token\n"
|
| 153 |
log_stream += "Evaluation complete.\n"
|
| 154 |
except Exception as e:
|
| 155 |
-
eval_report = f"- **Evaluation Failed:** Could not
|
| 156 |
log_stream += f"Warning: Evaluation failed. {e}\n"
|
| 157 |
|
| 158 |
-
progress(0.95, desc="Uploading to Hugging Face Hub")
|
| 159 |
-
|
| 160 |
if not HF_TOKEN:
|
| 161 |
return "Skipping upload: HF_TOKEN not found.", log_stream + "Skipping upload: HF_TOKEN not found."
|
| 162 |
|
|
@@ -164,39 +135,29 @@ def stage_5_evaluate_and_package(
|
|
| 164 |
repo_name = f"{model_id.split('/')[-1]}-amop-cpu"
|
| 165 |
repo_url = api.create_repo(repo_id=repo_name, exist_ok=True, token=HF_TOKEN)
|
| 166 |
|
| 167 |
-
# --- THIS IS THE UPDATED SECTION ---
|
| 168 |
-
# Read the template file
|
| 169 |
with open("model_card_template.md", "r", encoding="utf-8") as f:
|
| 170 |
template_content = f.read()
|
| 171 |
|
| 172 |
-
# Fill in the placeholders
|
| 173 |
model_card_content = template_content.format(
|
| 174 |
-
repo_name=repo_name,
|
| 175 |
-
model_id=model_id,
|
| 176 |
optimization_date=datetime.now().strftime("%Y-%m-%d %H:%M:%S"),
|
| 177 |
-
eval_report=eval_report,
|
| 178 |
-
|
| 179 |
-
pruning_percent=options['prune_percent'],
|
| 180 |
-
repo_id=repo_url.repo_id,
|
| 181 |
pipeline_log=pipeline_log
|
| 182 |
)
|
| 183 |
-
# --- END OF UPDATED SECTION ---
|
| 184 |
|
| 185 |
readme_path = os.path.join(optimized_model_path, "README.md")
|
| 186 |
-
with open(readme_path, "w", encoding="utf-8") as f:
|
| 187 |
-
f.write(model_card_content)
|
| 188 |
|
| 189 |
tokenizer = AutoTokenizer.from_pretrained(model_id, trust_remote_code=True)
|
| 190 |
tokenizer.save_pretrained(optimized_model_path)
|
| 191 |
|
| 192 |
api.upload_folder(
|
| 193 |
-
folder_path=optimized_model_path,
|
| 194 |
-
|
| 195 |
-
repo_type="model",
|
| 196 |
-
token=HF_TOKEN
|
| 197 |
)
|
| 198 |
|
| 199 |
-
final_message = f"β
Success! Your optimized model is available at: {repo_url}"
|
| 200 |
log_stream += "Upload complete.\n"
|
| 201 |
return final_message, log_stream
|
| 202 |
except Exception as e:
|
|
@@ -205,44 +166,56 @@ def stage_5_evaluate_and_package(
|
|
| 205 |
return f"β Error: {error_msg}", log_stream + error_msg
|
| 206 |
|
| 207 |
|
| 208 |
-
# --- 3. MAIN WORKFLOW FUNCTION ---
|
| 209 |
|
| 210 |
-
def run_amop_pipeline(model_id: str, do_prune: bool, prune_percent: float
|
|
|
|
|
|
|
|
|
|
|
|
|
| 211 |
if not model_id:
|
| 212 |
-
|
| 213 |
-
|
|
|
|
| 214 |
full_log = "[START] AMOP Pipeline Initiated.\n"
|
| 215 |
-
|
| 216 |
|
| 217 |
try:
|
|
|
|
|
|
|
|
|
|
| 218 |
model = AutoModel.from_pretrained(model_id, trust_remote_code=True)
|
| 219 |
full_log += f"Successfully loaded base model '{model_id}'.\n"
|
| 220 |
|
|
|
|
|
|
|
| 221 |
if do_prune:
|
| 222 |
-
model, log = stage_2_prune_model(model, prune_percent
|
| 223 |
full_log += log
|
| 224 |
else:
|
| 225 |
full_log += "[STAGE 2] Pruning skipped by user.\n"
|
| 226 |
|
| 227 |
-
#
|
| 228 |
-
|
| 229 |
-
|
| 230 |
-
optimized_path, log = stage_3_and_4_quantize_and_onnx(model_id, progress)
|
| 231 |
full_log += log
|
| 232 |
|
|
|
|
|
|
|
| 233 |
options = {'prune': do_prune, 'prune_percent': prune_percent}
|
| 234 |
-
|
| 235 |
full_log += log
|
| 236 |
-
|
| 237 |
-
|
|
|
|
| 238 |
|
| 239 |
except Exception as e:
|
| 240 |
logging.error(f"AMOP Pipeline failed. Error: {e}", exc_info=True)
|
| 241 |
full_log += f"\n[ERROR] Pipeline failed: {e}"
|
| 242 |
-
|
| 243 |
|
| 244 |
|
| 245 |
-
# --- 4. GRADIO USER INTERFACE ---
|
| 246 |
|
| 247 |
with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
| 248 |
gr.Markdown("# AMOP: Adaptive Model Optimization Pipeline")
|
|
@@ -266,12 +239,11 @@ with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
|
| 266 |
prune_slider = gr.Slider(minimum=0, maximum=90, value=20, step=5, label="Pruning Percentage (%)")
|
| 267 |
|
| 268 |
gr.Checkbox(label="Enable Quantization & ONNX (Stages 3 & 4)", value=True, interactive=False)
|
| 269 |
-
|
| 270 |
run_button = gr.Button("3. Run Optimization Pipeline", variant="primary")
|
| 271 |
|
| 272 |
with gr.Column(scale=2):
|
| 273 |
gr.Markdown("### Pipeline Status & Logs")
|
| 274 |
-
final_output = gr.Markdown(label="Final Result")
|
| 275 |
log_output = gr.Textbox(label="Live Logs", lines=20, interactive=False)
|
| 276 |
|
| 277 |
analyze_button.click(
|
|
|
|
| 3 |
import os
|
| 4 |
import logging
|
| 5 |
from datetime import datetime
|
| 6 |
+
from huggingface_hub import HfApi
|
| 7 |
from transformers import AutoConfig, AutoModel, AutoTokenizer
|
| 8 |
from optimum.onnxruntime import ORTQuantizer, ORTModelForCausalLM
|
| 9 |
from optimum.onnxruntime.configuration import AutoQuantizationConfig
|
|
|
|
| 13 |
|
| 14 |
# --- 1. SETUP AND CONFIGURATION ---
|
| 15 |
|
|
|
|
| 16 |
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
|
| 17 |
|
|
|
|
| 18 |
HF_TOKEN = os.getenv("HF_TOKEN")
|
| 19 |
if not HF_TOKEN:
|
| 20 |
logging.warning("HF_TOKEN environment variable not set. Packaging and uploading will fail.")
|
|
|
|
| 33 |
"""
|
| 34 |
log_stream = "[STAGE 1] Analyzing model...\n"
|
| 35 |
try:
|
| 36 |
+
config = AutoConfig.from_pretrained(model_id, trust_remote_code=True)
|
| 37 |
model_type = config.model_type
|
|
|
|
| 38 |
|
| 39 |
analysis_report = f"""
|
| 40 |
### Model Analysis Report
|
| 41 |
- **Model ID:** `{model_id}`
|
| 42 |
- **Architecture:** `{model_type}`
|
|
|
|
| 43 |
"""
|
| 44 |
|
| 45 |
recommendation = ""
|
|
|
|
| 53 |
recommendation = "**Recommendation:** Unrecognized architecture. The standard path of **Quantization -> ONNX Conversion** is a safe starting point."
|
| 54 |
|
| 55 |
log_stream += f"Analysis complete. Architecture: {model_type}.\n"
|
| 56 |
+
# GRADIO 5 UPDATE: Instead of gr.update(), return a new component object.
|
| 57 |
+
return log_stream, analysis_report + "\n" + recommendation, gr.Group(visible=True)
|
| 58 |
except Exception as e:
|
| 59 |
error_msg = f"Failed to analyze model '{model_id}'. Error: {e}"
|
| 60 |
logging.error(error_msg)
|
| 61 |
+
return log_stream + error_msg, "Could not analyze model. Please check the model ID and try again.", gr.Group(visible=False)
|
| 62 |
|
| 63 |
|
| 64 |
+
def stage_2_prune_model(model, prune_percentage: float):
|
|
|
|
|
|
|
|
|
|
| 65 |
if prune_percentage == 0:
|
| 66 |
return model, "Skipped pruning as percentage was 0."
|
| 67 |
|
| 68 |
log_stream = "[STAGE 2] Pruning model...\n"
|
|
|
|
|
|
|
|
|
|
|
|
|
| 69 |
for name, module in model.named_modules():
|
| 70 |
if isinstance(module, torch.nn.Linear):
|
| 71 |
prune.l1_unstructured(module, name='weight', amount=prune_percentage / 100.0)
|
| 72 |
+
prune.remove(module, 'weight')
|
|
|
|
|
|
|
|
|
|
| 73 |
|
| 74 |
+
log_stream += f"Pruning complete. Note: This version exports the original model to ONNX for maximum compatibility.\n"
|
| 75 |
return model, log_stream
|
| 76 |
|
| 77 |
|
| 78 |
+
def stage_3_and_4_quantize_and_onnx(model_id: str):
|
|
|
|
|
|
|
|
|
|
|
|
|
| 79 |
log_stream = "[STAGE 3 & 4] Converting to ONNX and Quantizing...\n"
|
|
|
|
|
|
|
| 80 |
try:
|
| 81 |
run_id = datetime.now().strftime("%Y%m%d-%H%M%S")
|
| 82 |
onnx_path = os.path.join(OUTPUT_DIR, f"{model_id.replace('/', '_')}-{run_id}-onnx")
|
|
|
|
| 85 |
main_export(model_id, output=onnx_path, task="auto", trust_remote_code=True)
|
| 86 |
log_stream += f"Successfully exported base model to ONNX at: {onnx_path}\n"
|
| 87 |
|
|
|
|
| 88 |
quantizer = ORTQuantizer.from_pretrained(onnx_path)
|
| 89 |
+
dqconfig = AutoQuantizationConfig.avx512_vnni(is_static=False, per_channel=False)
|
| 90 |
|
| 91 |
quantized_path = os.path.join(onnx_path, "quantized")
|
| 92 |
quantizer.quantize(save_dir=quantized_path, quantization_config=dqconfig)
|
| 93 |
|
| 94 |
log_stream += f"Successfully quantized model to: {quantized_path}\n"
|
| 95 |
return quantized_path, log_stream
|
|
|
|
| 96 |
except Exception as e:
|
| 97 |
error_msg = f"Failed during ONNX conversion/quantization. Error: {e}"
|
| 98 |
logging.error(error_msg, exc_info=True)
|
|
|
|
| 103 |
model_id: str,
|
| 104 |
optimized_model_path: str,
|
| 105 |
pipeline_log: str,
|
| 106 |
+
options: dict
|
|
|
|
| 107 |
):
|
|
|
|
|
|
|
|
|
|
| 108 |
log_stream = "[STAGE 5] Evaluating and Packaging...\n"
|
|
|
|
|
|
|
| 109 |
try:
|
| 110 |
ort_model = ORTModelForCausalLM.from_pretrained(optimized_model_path)
|
| 111 |
tokenizer = AutoTokenizer.from_pretrained(model_id, trust_remote_code=True)
|
|
|
|
| 118 |
end_time = time.time()
|
| 119 |
|
| 120 |
latency = (end_time - start_time) * 1000
|
| 121 |
+
num_tokens = len(gen_tokens[0]) - inputs.input_ids.shape[1]
|
| 122 |
+
ms_per_token = latency / num_tokens if num_tokens > 0 else float('inf')
|
| 123 |
|
| 124 |
eval_report = f"- **Inference Latency:** {latency:.2f} ms\n"
|
| 125 |
eval_report += f"- **Speed:** {ms_per_token:.2f} ms/token\n"
|
| 126 |
log_stream += "Evaluation complete.\n"
|
| 127 |
except Exception as e:
|
| 128 |
+
eval_report = f"- **Evaluation Failed:** Could not run generation. This often happens if the base model is not a text-generation model. Error: {e}\n"
|
| 129 |
log_stream += f"Warning: Evaluation failed. {e}\n"
|
| 130 |
|
|
|
|
|
|
|
| 131 |
if not HF_TOKEN:
|
| 132 |
return "Skipping upload: HF_TOKEN not found.", log_stream + "Skipping upload: HF_TOKEN not found."
|
| 133 |
|
|
|
|
| 135 |
repo_name = f"{model_id.split('/')[-1]}-amop-cpu"
|
| 136 |
repo_url = api.create_repo(repo_id=repo_name, exist_ok=True, token=HF_TOKEN)
|
| 137 |
|
|
|
|
|
|
|
| 138 |
with open("model_card_template.md", "r", encoding="utf-8") as f:
|
| 139 |
template_content = f.read()
|
| 140 |
|
|
|
|
| 141 |
model_card_content = template_content.format(
|
| 142 |
+
repo_name=repo_name, model_id=model_id,
|
|
|
|
| 143 |
optimization_date=datetime.now().strftime("%Y-%m-%d %H:%M:%S"),
|
| 144 |
+
eval_report=eval_report, pruning_status="Enabled" if options['prune'] else "Disabled",
|
| 145 |
+
pruning_percent=options['prune_percent'], repo_id=repo_url.repo_id,
|
|
|
|
|
|
|
| 146 |
pipeline_log=pipeline_log
|
| 147 |
)
|
|
|
|
| 148 |
|
| 149 |
readme_path = os.path.join(optimized_model_path, "README.md")
|
| 150 |
+
with open(readme_path, "w", encoding="utf-8") as f: f.write(model_card_content)
|
|
|
|
| 151 |
|
| 152 |
tokenizer = AutoTokenizer.from_pretrained(model_id, trust_remote_code=True)
|
| 153 |
tokenizer.save_pretrained(optimized_model_path)
|
| 154 |
|
| 155 |
api.upload_folder(
|
| 156 |
+
folder_path=optimized_model_path, repo_id=repo_url.repo_id,
|
| 157 |
+
repo_type="model", token=HF_TOKEN
|
|
|
|
|
|
|
| 158 |
)
|
| 159 |
|
| 160 |
+
final_message = f"β
Success! Your optimized model is available at: [{repo_url.repo_id}](https://huggingface.co/{repo_url.repo_id})"
|
| 161 |
log_stream += "Upload complete.\n"
|
| 162 |
return final_message, log_stream
|
| 163 |
except Exception as e:
|
|
|
|
| 166 |
return f"β Error: {error_msg}", log_stream + error_msg
|
| 167 |
|
| 168 |
|
| 169 |
+
# --- 3. MAIN WORKFLOW FUNCTION (GENERATOR FOR GRADIO 5+) ---
|
| 170 |
|
| 171 |
+
def run_amop_pipeline(model_id: str, do_prune: bool, prune_percent: float):
|
| 172 |
+
"""
|
| 173 |
+
This is now a generator function. It 'yields' updates to the UI
|
| 174 |
+
at each step, providing a real-time log.
|
| 175 |
+
"""
|
| 176 |
if not model_id:
|
| 177 |
+
yield "Please enter a Model ID.", ""
|
| 178 |
+
return
|
| 179 |
+
|
| 180 |
full_log = "[START] AMOP Pipeline Initiated.\n"
|
| 181 |
+
yield gr.Markdown("π Pipeline is running... Check logs for real-time updates."), full_log
|
| 182 |
|
| 183 |
try:
|
| 184 |
+
# Step 1: Load Model
|
| 185 |
+
full_log += "Loading base model...\n"
|
| 186 |
+
yield gr.Markdown("π Pipeline is running... (1/5) Loading model"), full_log
|
| 187 |
model = AutoModel.from_pretrained(model_id, trust_remote_code=True)
|
| 188 |
full_log += f"Successfully loaded base model '{model_id}'.\n"
|
| 189 |
|
| 190 |
+
# Step 2: Pruning
|
| 191 |
+
yield gr.Markdown("π Pipeline is running... (2/5) Pruning model"), full_log
|
| 192 |
if do_prune:
|
| 193 |
+
model, log = stage_2_prune_model(model, prune_percent)
|
| 194 |
full_log += log
|
| 195 |
else:
|
| 196 |
full_log += "[STAGE 2] Pruning skipped by user.\n"
|
| 197 |
|
| 198 |
+
# Step 3 & 4: ONNX Conversion
|
| 199 |
+
yield gr.Markdown("π Pipeline is running... (3/5) Converting to ONNX & Quantizing"), full_log
|
| 200 |
+
optimized_path, log = stage_3_and_4_quantize_and_onnx(model_id)
|
|
|
|
| 201 |
full_log += log
|
| 202 |
|
| 203 |
+
# Step 5: Packaging
|
| 204 |
+
yield gr.Markdown("π Pipeline is running... (4/5) Evaluating and Packaging"), full_log
|
| 205 |
options = {'prune': do_prune, 'prune_percent': prune_percent}
|
| 206 |
+
final_status_msg, log = stage_5_evaluate_and_package(model_id, optimized_path, full_log, options)
|
| 207 |
full_log += log
|
| 208 |
+
|
| 209 |
+
# Final Step: Done
|
| 210 |
+
yield gr.Markdown(final_status_msg), full_log
|
| 211 |
|
| 212 |
except Exception as e:
|
| 213 |
logging.error(f"AMOP Pipeline failed. Error: {e}", exc_info=True)
|
| 214 |
full_log += f"\n[ERROR] Pipeline failed: {e}"
|
| 215 |
+
yield f"β An error occurred during the pipeline. Check the logs for details.", full_log
|
| 216 |
|
| 217 |
|
| 218 |
+
# --- 4. GRADIO USER INTERFACE (for Gradio 5+) ---
|
| 219 |
|
| 220 |
with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
| 221 |
gr.Markdown("# AMOP: Adaptive Model Optimization Pipeline")
|
|
|
|
| 239 |
prune_slider = gr.Slider(minimum=0, maximum=90, value=20, step=5, label="Pruning Percentage (%)")
|
| 240 |
|
| 241 |
gr.Checkbox(label="Enable Quantization & ONNX (Stages 3 & 4)", value=True, interactive=False)
|
|
|
|
| 242 |
run_button = gr.Button("3. Run Optimization Pipeline", variant="primary")
|
| 243 |
|
| 244 |
with gr.Column(scale=2):
|
| 245 |
gr.Markdown("### Pipeline Status & Logs")
|
| 246 |
+
final_output = gr.Markdown(value="*Pipeline has not been run yet.*", label="Final Result")
|
| 247 |
log_output = gr.Textbox(label="Live Logs", lines=20, interactive=False)
|
| 248 |
|
| 249 |
analyze_button.click(
|