File size: 14,246 Bytes
5a51042
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ecc20dd
 
 
 
 
 
 
5a51042
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ecc20dd
5a51042
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ecc20dd
5a51042
 
 
 
 
 
 
 
 
 
 
 
ecc20dd
 
5a51042
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
from __future__ import annotations

import re
from dataclasses import dataclass
from datetime import datetime, timezone
from pathlib import Path
from typing import Any, Dict, List, Optional

import gradio as gr
import requests
import yaml
from huggingface_hub import hf_hub_download
from huggingface_hub.utils import HfHubHTTPError

API_BASE = "https://huggingface.co/api"
PIPELINE_FILTER = "text-generation"
TRENDING_LIMIT = 10
TRENDING_FETCH_LIMIT = 50
PR_SCAN_LIMIT = 40
USER_AGENT = "skills-evals-leaderboard/0.2"
TABLE_HEADERS = [
    "Model",
    "Benchmark",
    "Score",
    "Source",
]

TABLE_DATATYPES = [
    "text",
    "text",
    "number",
    "markdown",
]


def _normalize(text: Optional[str]) -> str:
    if not text:
        return ""
    text = text.lower()
    text = re.sub(r"[^a-z0-9]+", " ", text)
    return text.strip()


def _coerce_score(value: Any) -> Optional[float]:
    if value is None:
        return None
    if isinstance(value, (int, float)):
        return float(value)
    if isinstance(value, str):
        candidate = value.strip()
        if candidate.endswith("%"):
            candidate = candidate[:-1]
        try:
            return float(candidate)
        except ValueError:
            return None
    return None


@dataclass(frozen=True)
class BenchmarkSpec:
    key: str
    label: str
    aliases: tuple[str, ...]

    def matches(self, fields: List[str]) -> bool:
        for alias in self.aliases:
            alias_norm = _normalize(alias)
            if not alias_norm:
                continue
            for field in fields:
                if alias_norm in field:
                    return True
        return False


BENCHMARKS: Dict[str, BenchmarkSpec] = {
    "mmlu": BenchmarkSpec(
        key="mmlu",
        label="MMLU",
        aliases=("mmlu", "massive multitask language understanding"),
    ),
    "bigcodebench": BenchmarkSpec(
        key="bigcodebench",
        label="BigCodeBench",
        aliases=("bigcodebench", "big code bench"),
    ),
    "arc_mc": BenchmarkSpec(
        key="arc_mc",
        label="ARC MC",
        aliases=(
            "arc mc",
            "arc-challenge",
            "arc challenge",
            "arc multiple choice",
            "arc c",
        ),
    ),
}


class LeaderboardFetcher:
    def __init__(self) -> None:
        self.session = requests.Session()
        self.session.headers.update({"User-Agent": USER_AGENT})
        self.logs: List[str] = []

    def build(self) -> Dict[str, Any]:
        trending = self._fetch_trending_models()
        leaders: List[Dict[str, Any]] = []
        for entry in trending:
            repo_id = entry.get("modelId") or entry.get("id")
            if not repo_id:
                continue
            scores = self._collect_scores(repo_id)
            if scores["scores"]:
                leaders.append(scores)
        return self._compose_tables(leaders)

    def log_text(self) -> str:
        if not self.logs:
            return "No actions recorded."
        return "\n".join(self.logs)

    def _fetch_trending_models(self) -> List[Dict[str, Any]]:
        params = {"sort": "trendingScore", "limit": TRENDING_FETCH_LIMIT}
        response = self.session.get(
            f"{API_BASE}/models",
            params=params,
            timeout=30,
        )
        response.raise_for_status()
        data = response.json()
        if not isinstance(data, list):
            raise ValueError("Unexpected trending response.")
        filtered = [
            model
            for model in data
            if (model.get("pipeline_tag") == PIPELINE_FILTER or PIPELINE_FILTER in (model.get("tags") or []))
        ]
        if not filtered:
            self.logs.append("⚠️ No text-generation models in trending feed.")
            return []
        limited = filtered[:TRENDING_LIMIT]
        if len(limited) < TRENDING_LIMIT:
            self.logs.append(f"⚠️ Only {len(limited)} text-generation models available.")
        else:
            self.logs.append(f"πŸ” Loaded {TRENDING_LIMIT} trending text-generation models.")
        return limited

    def _collect_scores(self, repo_id: str) -> Dict[str, Any]:
        owner = repo_id.split("/")[0]
        card_meta = self._read_model_card(repo_id)
        model_index = card_meta.get("model-index")
        if model_index:
            self.logs.append(f"βœ… {repo_id}: model card metadata found.")
            scores = self._extract_scores(
                repo_id=repo_id,
                model_index=model_index,
                contributor=owner,
                source_type="model-card",
                source_url=f"https://huggingface.co/{repo_id}",
                revision="main",
            )
            if scores:
                return {"model_id": repo_id, "scores": scores}

        prs = self._fetch_pull_requests(repo_id)
        for pr in prs:
            revision = f"refs/pr/{pr['num']}"
            pr_meta = self._read_model_card(repo_id, revision=revision)
            pr_index = pr_meta.get("model-index")
            if not pr_index:
                continue
            author_info = pr.get("author", {}) or {}
            contributor = author_info.get("name") or author_info.get("fullname") or "unknown-author"
            discussion_path = f"{repo_id}/discussions/{pr['num']}"
            source_url = f"https://huggingface.co/{discussion_path}"
            scores = self._extract_scores(
                repo_id=repo_id,
                model_index=pr_index,
                contributor=contributor,
                source_type="pull-request",
                source_url=source_url,
                revision=revision,
            )
            if scores:
                note = f"πŸ“ {repo_id}: PR #{pr['num']} by {contributor}."
                self.logs.append(note)
                return {"model_id": repo_id, "scores": scores}

        self.logs.append(f"⚠️ {repo_id}: no target benchmarks located.")
        return {"model_id": repo_id, "scores": {}}

    def _read_model_card(
        self,
        repo_id: str,
        revision: Optional[str] = None,
    ) -> Dict[str, Any]:
        try:
            path = hf_hub_download(
                repo_id=repo_id,
                filename="README.md",
                repo_type="model",
                revision=revision,
            )
        except HfHubHTTPError as err:
            ctx = f"{repo_id} ({revision or 'main'})"
            self.logs.append(f"🚫 {ctx}: README download failed ({err}).")
            return {}
        text = Path(path).read_text(encoding="utf-8", errors="ignore")
        return self._parse_front_matter(text)

    @staticmethod
    def _parse_front_matter(content: str) -> Dict[str, Any]:
        content = content.lstrip("\ufeff")
        if not content.startswith("---"):
            return {}
        lines = content.splitlines()
        end_idx = None
        for idx, line in enumerate(lines[1:], start=1):
            if line.strip() == "---":
                end_idx = idx
                break
        if end_idx is None:
            return {}
        front_matter = "\n".join(lines[1:end_idx])
        try:
            data = yaml.safe_load(front_matter) or {}
            return data if isinstance(data, dict) else {}
        except yaml.YAMLError:
            return {}

    def _fetch_pull_requests(self, repo_id: str) -> List[Dict[str, Any]]:
        url = f"{API_BASE}/models/{repo_id}/discussions"
        try:
            response = self.session.get(
                url,
                params={"limit": PR_SCAN_LIMIT},
                timeout=30,
            )
            response.raise_for_status()
        except requests.RequestException as err:
            self.logs.append(f"🚫 {repo_id}: PR list request failed ({err}).")
            return []

        payload = response.json()
        discussions = payload.get("discussions", [])
        prs = [disc for disc in discussions if disc.get("isPullRequest")]
        prs.sort(key=lambda item: item.get("createdAt", ""), reverse=True)
        if prs:
            self.logs.append(f"πŸ“¬ {repo_id}: scanning {len(prs)} pull requests.")
        return prs

    def _extract_scores(
        self,
        repo_id: str,
        model_index: Any,
        contributor: str,
        source_type: str,
        source_url: str,
        revision: str,
    ) -> Dict[str, Dict[str, Any]]:
        if not isinstance(model_index, list):
            return {}
        scores: Dict[str, Dict[str, Any]] = {}
        for entry in model_index:
            if not isinstance(entry, dict):
                continue
            model_name = entry.get("name") or repo_id.split("/")[-1]
            for result in entry.get("results", []):
                dataset_info = result.get("dataset") or {}
                dataset_name = dataset_info.get("name")
                dataset_type = dataset_info.get("type")
                task_info = result.get("task") or {}
                task_type = task_info.get("type")
                for metric in result.get("metrics", []):
                    benchmark_key = self._match_benchmark(
                        dataset_name,
                        dataset_type,
                        metric,
                    )
                    if not benchmark_key:
                        continue
                    raw_value = metric.get("value")
                    value = _coerce_score(raw_value)
                    if value is None:
                        continue
                    unit = metric.get("unit") or ""
                    is_pct = isinstance(raw_value, str) and raw_value.strip().endswith("%")
                    if not unit and is_pct:
                        unit = "%"
                    metric_name = metric.get("name") or metric.get("type") or ""
                    payload = {
                        "model": repo_id,
                        "model_name": model_name,
                        "benchmark_key": benchmark_key,
                        "benchmark_label": BENCHMARKS[benchmark_key].label,
                        "value": value,
                        "unit": unit,
                        "dataset": dataset_name or dataset_type or "",
                        "task_type": task_type or "",
                        "metric_name": metric_name,
                        "contributor": contributor,
                        "source_type": source_type,
                        "source_url": source_url,
                        "revision": revision,
                    }
                    existing = scores.get(benchmark_key)
                    if not existing or value > existing["value"]:
                        scores[benchmark_key] = payload
        return scores

    def _match_benchmark(
        self,
        dataset_name: Optional[str],
        dataset_type: Optional[str],
        metric: Dict[str, Any],
    ) -> Optional[str]:
        fields = [
            _normalize(dataset_name),
            _normalize(dataset_type),
            _normalize(metric.get("name")),
            _normalize(metric.get("type")),
        ]
        fields = [field for field in fields if field]
        for key, spec in BENCHMARKS.items():
            if spec.matches(fields):
                return key
        return None

    def _compose_tables(self, entries: List[Dict[str, Any]]) -> Dict[str, Any]:
        all_rows: List[Dict[str, Any]] = []
        per_benchmark: Dict[str, List[Dict[str, Any]]] = {key: [] for key in BENCHMARKS}
        for entry in entries:
            for benchmark_key, payload in entry["scores"].items():
                row = {
                    "Model": entry["model_id"],
                    "Benchmark": BENCHMARKS[benchmark_key].label,
                    "Score": round(payload["value"], 2),
                    "Source": f"{payload['source_type']} by [{payload['contributor']}]({payload['source_url']})",
                }
                all_rows.append(row)
                per_benchmark[benchmark_key].append(row)

        for rows in per_benchmark.values():
            rows.sort(key=lambda r: r["Score"], reverse=True)
        all_rows.sort(key=lambda r: r["Score"], reverse=True)

        return {
            "all_rows": all_rows,
            "per_benchmark": per_benchmark,
            "stats": {
                "models_with_scores": len(entries),
                "row_count": len(all_rows),
                "generated_at": datetime.now(timezone.utc).isoformat(),
            },
        }


def _rows_to_matrix(rows: List[Dict[str, Any]]) -> List[List[Any]]:
    return [[row.get(header, "") for header in TABLE_HEADERS] for row in rows]


def refresh_handler() -> List[Any]:
    fetcher = LeaderboardFetcher()
    try:
        result = fetcher.build()
        stats = result["stats"]
        status = "\n".join(
            [
                f"Last updated: {stats['generated_at']}",
                f"Models with scores: {stats['models_with_scores']}",
                f"Total entries: {stats['row_count']}",
                "",
                fetcher.log_text(),
            ]
        )
        return [
            status,
            _rows_to_matrix(result["all_rows"]),
        ]
    except Exception as exc:  # pylint: disable=broad-except
        error = f"❌ Failed to refresh leaderboard: {exc}"
        empty: List[List[Any]] = []
        return [error, empty]


with gr.Blocks(theme=gr.themes.Soft()) as demo:
    gr.Markdown(
        """
        # HF Evaluation Leaderboard
        Shows MMLU, BigCodeBench, and ARC MC scores pulled from model-index
        metadata or their pull requests for the top text-generation models.
        """
    )
    refresh_button = gr.Button("Refresh", variant="primary")
    status_box = gr.Markdown("")

    all_table = gr.Dataframe(headers=TABLE_HEADERS, interactive=False, datatype=TABLE_DATATYPES)

    refresh_button.click(  # pylint: disable=no-member
        refresh_handler,
        inputs=[],
        outputs=[
            status_box,
            all_table,
        ],
    )
    demo.load(  # pylint: disable=no-member
        refresh_handler,
        outputs=[
            status_box,
            all_table,
        ],
    )


if __name__ == "__main__":
    demo.launch()