Spaces:
Running
Running
File size: 10,305 Bytes
b931367 c383152 b931367 c383152 b931367 c383152 b931367 c383152 439ab17 c383152 b931367 c383152 b931367 c383152 b931367 c383152 b931367 c383152 b931367 c383152 439ab17 b931367 c383152 b931367 c383152 b931367 c383152 b931367 c383152 b931367 c383152 b931367 c383152 b931367 c383152 b931367 c383152 b931367 c383152 b931367 c383152 b931367 c383152 b931367 c383152 b931367 c383152 b931367 c383152 b931367 c383152 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 |
import gradio as gr
import uuid
from datetime import datetime
import pandas as pd
from model_handler import ModelHandler
from config import CHAT_MODEL_SPECS, LING_1T
from recommand_config import RECOMMENDED_INPUTS
from ui_components.model_selector import create_model_selector
from i18n import get_text
def get_history_df(history):
if not history:
# Provide explicit column names for an empty DataFrame
return pd.DataFrame({'ID': pd.Series(dtype='str'), '对话': pd.Series(dtype='str')})
df = pd.DataFrame(history)
# Ensure columns exist before renaming
if 'id' in df.columns and 'title' in df.columns:
return df[['id', 'title']].rename(columns={'id': 'ID', '对话': '对话'})
else:
return pd.DataFrame({'ID': pd.Series(dtype='str'), '对话': pd.Series(dtype='str')})
def create_chat_tab(initial_lang: str, current_lang_state: gr.State):
model_handler = ModelHandler()
# Browser-side storage for conversation history and current ID
conversation_store = gr.BrowserState(default_value=[], storage_key="ling_conversation_history")
current_conversation_id = gr.BrowserState(default_value=None, storage_key="ling_current_conversation_id")
def handle_new_chat(history, current_conv_id, lang):
current_convo = next((c for c in history if c["id"] == current_conv_id), None) if history else None
if current_convo and not current_convo.get("messages", []):
return current_conv_id, history, [], gr.update(value=get_history_df(history))
conv_id = str(uuid.uuid4())
new_convo_title = get_text('chat_new_conversation_title', lang)
new_convo = {
"id": conv_id, "title": new_convo_title,
"messages": [], "timestamp": datetime.now().isoformat()
}
updated_history = [new_convo] + (history or [])
return conv_id, updated_history, [], gr.update(value=get_history_df(updated_history))
def load_conversation_from_df(df: pd.DataFrame, evt: gr.SelectData, history, lang):
if evt.index is None or len(df) == 0:
return None, []
selected_id = df.iloc[evt.index[0]]['ID']
for convo in history:
if convo["id"] == selected_id:
return selected_id, convo["messages"]
new_id, _, new_msgs, _ = handle_new_chat(history, None, lang)
return new_id, new_msgs
with gr.Row(equal_height=False, elem_id="indicator-chat-tab"):
with gr.Column(scale=1):
new_chat_btn = gr.Button(get_text('chat_new_chat_button', initial_lang))
history_df = gr.DataFrame(
value=get_history_df(conversation_store.value),
headers=["ID", get_text('chat_history_dataframe_header', initial_lang)],
datatype=["str", "str"],
interactive=False,
visible=True,
column_widths=["0%", "99%"]
)
with gr.Column(scale=4):
chatbot = gr.Chatbot(height=500, placeholder=get_text('chat_chatbot_placeholder', initial_lang))
with gr.Row():
textbox = gr.Textbox(placeholder=get_text('chat_textbox_placeholder', initial_lang), container=False, scale=7)
submit_btn = gr.Button(get_text('chat_submit_button', initial_lang), scale=1)
recommended_title = gr.Markdown(get_text('chat_recommended_dialogues_title', initial_lang))
recommended_dataset = gr.Dataset(
components=[gr.Textbox(visible=False)],
samples=[[item["task"]] for item in RECOMMENDED_INPUTS],
label=get_text('chat_recommended_dataset_label', initial_lang),
headers=[get_text('chat_recommended_dataset_header', initial_lang)],
)
with gr.Column(scale=1):
model_dropdown, model_description_markdown = create_model_selector(
model_specs=CHAT_MODEL_SPECS,
default_model_constant=LING_1T
)
system_prompt_textbox = gr.Textbox(label=get_text('chat_system_prompt_label', initial_lang), lines=5, placeholder=get_text('chat_system_prompt_placeholder', initial_lang))
temperature_slider = gr.Slider(minimum=0, maximum=1.0, value=0.7, step=0.1, label=get_text('chat_temperature_slider_label', initial_lang))
# --- Event Handlers --- #
def on_select_recommendation(evt: gr.SelectData, history, current_conv_id, lang):
selected_task = evt.value[0]
item = next((i for i in RECOMMENDED_INPUTS if i["task"] == selected_task), None)
if not item: return gr.update(), gr.update(), gr.update(), gr.update(), gr.update(), gr.update(), gr.update(), gr.update()
new_id, new_history, new_messages, history_df_update = handle_new_chat(history, current_conv_id, lang)
return (
new_id, new_history,
gr.update(value=item["model"]),
gr.update(value=item["system_prompt"]),
gr.update(value=item["temperature"]),
gr.update(value=item["user_message"]),
history_df_update,
new_messages
)
def chat_stream(conv_id, history, model_display_name, message, chat_history, system_prompt, temperature):
if not message:
yield chat_history
return
model_constant = next((k for k, v in CHAT_MODEL_SPECS.items() if v["display_name"] == model_display_name), LING_1T)
response_generator = model_handler.get_response(model_constant, message, chat_history, system_prompt, temperature)
for history_update in response_generator:
yield history_update
def on_chat_stream_complete(conv_id, history, final_chat_history, lang):
current_convo = next((c for c in history if c["id"] == conv_id), None)
if not current_convo:
return history, gr.update()
new_convo_title = get_text('chat_new_conversation_title', lang)
if len(final_chat_history) > len(current_convo["messages"]) and current_convo["title"] == new_convo_title:
user_message = final_chat_history[-2]["content"] if len(final_chat_history) > 1 else final_chat_history[0]["content"]
current_convo["title"] = user_message[:50]
current_convo["messages"] = final_chat_history
current_convo["timestamp"] = datetime.now().isoformat()
history = sorted([c for c in history if c["id"] != conv_id] + [current_convo], key=lambda x: x["timestamp"], reverse=True)
return history, gr.update(value=get_history_df(history))
# Store all components that need i18n updates
components = {
"new_chat_btn": new_chat_btn,
"history_df": history_df,
"chatbot": chatbot,
"textbox": textbox,
"submit_btn": submit_btn,
"recommended_title": recommended_title,
"recommended_dataset": recommended_dataset,
"system_prompt_textbox": system_prompt_textbox,
"temperature_slider": temperature_slider,
"model_dropdown": model_dropdown,
"model_description_markdown": model_description_markdown,
# Non-updatable components needed for event handlers and app.py
"conversation_store": conversation_store,
"current_conversation_id": current_conversation_id,
}
# Wire event handlers
recommended_dataset.select(on_select_recommendation, inputs=[conversation_store, current_conversation_id, current_lang_state], outputs=[current_conversation_id, conversation_store, model_dropdown, system_prompt_textbox, temperature_slider, textbox, history_df, chatbot], show_progress="none")
submit_btn.click(
chat_stream,
[current_conversation_id, conversation_store, model_dropdown, textbox, chatbot, system_prompt_textbox, temperature_slider],
[chatbot]
).then(
on_chat_stream_complete,
[current_conversation_id, conversation_store, chatbot, current_lang_state],
[conversation_store, history_df]
)
textbox.submit(
chat_stream,
[current_conversation_id, conversation_store, model_dropdown, textbox, chatbot, system_prompt_textbox, temperature_slider],
[chatbot]
).then(
on_chat_stream_complete,
[current_conversation_id, conversation_store, chatbot, current_lang_state],
[conversation_store, history_df]
)
new_chat_btn.click(handle_new_chat, inputs=[conversation_store, current_conversation_id, current_lang_state], outputs=[current_conversation_id, conversation_store, chatbot, history_df])
history_df.select(load_conversation_from_df, inputs=[history_df, conversation_store, current_lang_state], outputs=[current_conversation_id, chatbot])
return components
def update_language(lang: str, components: dict):
"""
Returns a dictionary mapping components to their gr.update calls for language change.
"""
updates = {
components["new_chat_btn"]: gr.update(value=get_text('chat_new_chat_button', lang)),
components["history_df"]: gr.update(headers=["ID", get_text('chat_history_dataframe_header', lang)]),
components["chatbot"]: gr.update(placeholder=get_text('chat_chatbot_placeholder', lang)),
components["textbox"]: gr.update(placeholder=get_text('chat_textbox_placeholder', lang)),
components["submit_btn"]: gr.update(value=get_text('chat_submit_button', lang)),
components["recommended_title"]: gr.update(value=get_text('chat_recommended_dialogues_title', lang)),
components["recommended_dataset"]: gr.update(label=get_text('chat_recommended_dataset_label', lang), headers=[get_text('chat_recommended_dataset_header', lang)]),
components["system_prompt_textbox"]: gr.update(label=get_text('chat_system_prompt_label', lang), placeholder=get_text('chat_system_prompt_placeholder', lang)),
components["temperature_slider"]: gr.update(label=get_text('chat_temperature_slider_label', lang)),
}
return updates
|