Spaces:
Running
Running
File size: 15,896 Bytes
875b439 b931367 1b21038 b931367 875b439 b931367 c383152 b931367 1b21038 c383152 1b21038 c383152 1b21038 c383152 1b21038 c383152 1b21038 c383152 b931367 c383152 b931367 c383152 439ab17 1b21038 b931367 c383152 b931367 c383152 1b21038 b931367 1b21038 b931367 c383152 1b21038 b931367 1b21038 c383152 1b21038 b931367 c383152 b931367 1b21038 c383152 b931367 1b21038 b931367 c383152 b931367 c383152 b931367 c383152 b931367 875b439 c383152 b931367 1b21038 b931367 c383152 b931367 c383152 b931367 875b439 b931367 c383152 b931367 1b21038 b931367 c383152 1b21038 b931367 1b21038 c383152 1b21038 b931367 1b21038 b931367 1b21038 b931367 c383152 1b21038 c383152 875b439 c383152 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 |
from mimetypes import init
import gradio as gr
import uuid
from datetime import datetime
import pandas as pd
import re
from model_handler import ModelHandler
from config import CHAT_MODEL_SPECS, LING_1T
from recommand_config import get_recommended_inputs
from ui_components.model_selector import create_model_selector
from i18n import get_text
def on_app_load(request: gr.Request, history, conv_id, current_lang_state):
"""
Handles the application's initial state on load.
- Determines language from URL parameter.
- Loads conversation history or creates a new one.
"""
# --- Language Detection ---
query_params = dict(request.query_params)
url_lang = query_params.get("lang")
updated_lang = current_lang_state # Start with the default
if url_lang and url_lang in ["en", "zh"]:
updated_lang = url_lang
# --- History Loading Logic ---
if not history:
# First time ever, create a new conversation
conv_id = str(uuid.uuid4())
new_convo_title = get_text("chat_new_conversation_title", updated_lang)
new_convo = {
"id": conv_id,
"title": new_convo_title,
"messages": [],
"timestamp": datetime.now().isoformat(),
"system_prompt": "",
"model": CHAT_MODEL_SPECS[LING_1T]["display_name"],
"temperature": 0.7
}
history = [new_convo]
return (
conv_id,
history,
gr.update(value=get_history_df(history, updated_lang)),
[],
updated_lang,
)
if conv_id and any(c["id"] == conv_id for c in history):
# Valid last session, load it
for convo in history:
if convo["id"] == conv_id:
return (
conv_id,
history,
gr.update(value=get_history_df(history, updated_lang)),
convo["messages"],
updated_lang,
)
# Fallback to most recent conversation
most_recent_convo = history[0]
return (
most_recent_convo["id"],
history,
gr.update(value=get_history_df(history, updated_lang)),
most_recent_convo["messages"],
updated_lang,
)
def generate_conversation_title(messages, system_prompt):
"""
Generates a conversation title based on a heuristic, defensively handling
multiple possible message formats.
1. Tries to use the first user query.
2. Falls back to the system prompt.
3. Falls back to the current time.
"""
first_query = None
# Rule 1: Try to extract the first user query from various possible formats
if messages:
first_message = messages[0]
# Case 1: List[List[str]] -> [['user', 'assistant'], ...]
if isinstance(first_message, (list, tuple)) and len(first_message) > 0:
first_query = first_message[0]
# Case 2: List[Dict] (OpenAI format or others)
elif isinstance(first_message, dict):
if first_message.get("role") == "user":
first_query = first_message.get("content")
elif "text" in first_message: # Fallback for other observed formats
first_query = first_message["text"]
if first_query and isinstance(first_query, str):
# Split by common Chinese and English punctuation and whitespace
delimiters = r"[,。?!,?!.\s]+"
segments = re.split(delimiters, first_query)
title = ""
for seg in segments:
if seg:
title += seg
if len(title) > 3:
return title[:50] # Limit title length
if title:
return title[:50]
# Rule 2: Use the system prompt
if system_prompt:
return system_prompt[:32]
# Rule 3: Use the current time
return datetime.now().strftime("%H:%M")
def get_history_df(history, lang: str):
"""
Generates a language-aware DataFrame for the conversation history.
"""
if not history:
# Provide explicit column names for an empty DataFrame
return pd.DataFrame({'ID': pd.Series(dtype='str'), get_text('chat_history_dataframe_header', lang): pd.Series(dtype='str')})
df = pd.DataFrame(history)
# Ensure columns exist before renaming
if 'id' in df.columns and 'title' in df.columns:
header_text = get_text('chat_history_dataframe_header', lang)
# Ensure title is a string
df['title'] = df['title'].astype(str)
return df[['id', 'title']].rename(columns={'id': 'ID', 'title': header_text})
else:
return pd.DataFrame({'ID': pd.Series(dtype='str'), get_text('chat_history_dataframe_header', lang): pd.Series(dtype='str')})
def create_chat_tab(initial_lang: str, current_lang_state: gr.State):
model_handler = ModelHandler()
# Browser-side storage for conversation history and current ID
conversation_store = gr.BrowserState(default_value=[], storage_key="ling_conversation_history")
current_conversation_id = gr.BrowserState(default_value=None, storage_key="ling_current_conversation_id")
def handle_new_chat(history, current_conv_id, lang):
current_convo = next((c for c in history if c["id"] == current_conv_id), None) if history else None
if current_convo and not current_convo.get("messages", []):
return current_conv_id, history, [], gr.update(value=get_history_df(history, lang))
conv_id = str(uuid.uuid4())
new_convo_title = get_text('chat_new_conversation_title', lang)
new_convo = {
"id": conv_id, "title": new_convo_title,
"messages": [], "timestamp": datetime.now().isoformat(),
"system_prompt": "",
"model": CHAT_MODEL_SPECS[LING_1T]["display_name"],
"temperature": 0.7
}
updated_history = [new_convo] + (history or [])
return conv_id, updated_history, [], gr.update(value=get_history_df(updated_history, lang))
def load_conversation_from_df(df: pd.DataFrame, evt: gr.SelectData, history, lang):
if evt.index is None or len(df) == 0:
return None, [], "", CHAT_MODEL_SPECS[LING_1T]["display_name"], 0.7, ""
selected_id = df.iloc[evt.index[0]]['ID']
convo = next((c for c in history if c["id"] == selected_id), None)
if convo:
# Use .get() to provide defaults for old conversations
system_prompt = convo.get("system_prompt", "")
model = convo.get("model", CHAT_MODEL_SPECS[LING_1T]["display_name"])
temperature = convo.get("temperature", 0.7)
# Return updates for all components
return selected_id, convo["messages"], system_prompt, model, temperature, ""
# Fallback to creating a new chat if something goes wrong
new_id, _, new_msgs, _ = handle_new_chat(history, None, lang)
return new_id, new_msgs, "", CHAT_MODEL_SPECS[LING_1T]["display_name"], 0.7, ""
with gr.Row(equal_height=False, elem_id="indicator-chat-tab"):
with gr.Column(scale=1):
new_chat_btn = gr.Button(get_text('chat_new_chat_button', initial_lang))
history_df = gr.DataFrame(
value=get_history_df(conversation_store.value, initial_lang),
headers=["ID", get_text('chat_history_dataframe_header', initial_lang)],
datatype=["str", "str"],
interactive=False,
visible=True,
column_widths=["0%", "100%"]
)
with gr.Column(scale=4):
chatbot = gr.Chatbot(height=500, placeholder=get_text('chat_chatbot_placeholder', initial_lang))
with gr.Row():
textbox = gr.Textbox(placeholder=get_text('chat_textbox_placeholder', initial_lang), container=False, scale=7)
submit_btn = gr.Button(get_text('chat_submit_button', initial_lang), scale=1)
recommended_title = gr.Markdown(get_text('chat_recommended_dialogues_title', initial_lang))
recommended_dataset = gr.Dataset(
components=[gr.Textbox(visible=False)],
samples=[[item["task"]] for item in get_recommended_inputs(initial_lang)],
label=get_text('chat_recommended_dataset_label', initial_lang),
headers=[get_text('chat_recommended_dataset_header', initial_lang)],
)
with gr.Column(scale=1):
model_dropdown, model_description_markdown = create_model_selector(
model_specs=CHAT_MODEL_SPECS,
default_model_constant=LING_1T,
lang_state=current_lang_state,
initial_lang=initial_lang
)
system_prompt_textbox = gr.Textbox(label=get_text('chat_system_prompt_label', initial_lang), lines=5, placeholder=get_text('chat_system_prompt_placeholder', initial_lang))
temperature_slider = gr.Slider(minimum=0, maximum=1.0, value=0.7, step=0.1, label=get_text('chat_temperature_slider_label', initial_lang))
# --- Event Handlers --- #
def on_select_recommendation(evt: gr.SelectData, history, current_conv_id, lang):
selected_task = evt.value[0]
item = next((i for i in get_recommended_inputs(lang) if i["task"] == selected_task), None)
if not item:
return gr.update(), gr.update(), gr.update(), gr.update(), gr.update(), gr.update(), gr.update(), gr.update()
new_id, new_history, new_messages, history_df_update = handle_new_chat(history, current_conv_id, lang)
return (
new_id, new_history,
gr.update(value=item["model"]),
gr.update(value=item["system_prompt"]),
gr.update(value=item["temperature"]),
gr.update(value=item["user_message"]),
history_df_update,
new_messages
)
def chat_stream(conv_id, history, model_display_name, message, chat_history, system_prompt, temperature):
if not message:
yield chat_history
return
model_constant = next((k for k, v in CHAT_MODEL_SPECS.items() if v["display_name"] == model_display_name), LING_1T)
response_generator = model_handler.get_response(model_constant, message, chat_history, system_prompt, temperature)
for history_update in response_generator:
yield history_update
def on_chat_stream_complete(conv_id, history, final_chat_history, system_prompt, model_display_name, temperature, lang):
current_convo = next((c for c in history if c["id"] == conv_id), None)
if not current_convo:
return history, gr.update()
# Check if this is the first turn of a new conversation
new_convo_title_default = get_text('chat_new_conversation_title', lang)
is_new_conversation = current_convo["title"] == new_convo_title_default
# If it's a new conversation and we have messages, generate a title and save metadata
if is_new_conversation and len(final_chat_history) > len(current_convo.get("messages", [])):
current_convo["system_prompt"] = system_prompt
current_convo["model"] = model_display_name
current_convo["temperature"] = temperature
new_title = generate_conversation_title(final_chat_history, system_prompt)
current_convo["title"] = new_title
current_convo["messages"] = final_chat_history
current_convo["timestamp"] = datetime.now().isoformat()
history = sorted([c for c in history if c["id"] != conv_id] + [current_convo], key=lambda x: x["timestamp"], reverse=True)
return history, gr.update(value=get_history_df(history, lang))
# Store all components that need i18n updates
components = {
"new_chat_btn": new_chat_btn,
"history_df": history_df,
"chatbot": chatbot,
"textbox": textbox,
"submit_btn": submit_btn,
"recommended_title": recommended_title,
"recommended_dataset": recommended_dataset,
"system_prompt_textbox": system_prompt_textbox,
"temperature_slider": temperature_slider,
"model_dropdown": model_dropdown,
"model_description_markdown": model_description_markdown,
# Non-updatable components needed for event handlers and app.py
"conversation_store": conversation_store,
"current_conversation_id": current_conversation_id,
}
# Wire event handlers
recommended_dataset.select(on_select_recommendation, inputs=[conversation_store, current_conversation_id, current_lang_state], outputs=[current_conversation_id, conversation_store, model_dropdown, system_prompt_textbox, temperature_slider, textbox, history_df, chatbot], show_progress="hidden")
submit_btn.click(
chat_stream,
[current_conversation_id, conversation_store, model_dropdown, textbox, chatbot, system_prompt_textbox, temperature_slider],
[chatbot]
).then(
on_chat_stream_complete,
[current_conversation_id, conversation_store, chatbot, system_prompt_textbox, model_dropdown, temperature_slider, current_lang_state],
[conversation_store, history_df]
)
textbox.submit(
chat_stream,
[current_conversation_id, conversation_store, model_dropdown, textbox, chatbot, system_prompt_textbox, temperature_slider],
[chatbot]
).then(
on_chat_stream_complete,
[current_conversation_id, conversation_store, chatbot, system_prompt_textbox, model_dropdown, temperature_slider, current_lang_state],
[conversation_store, history_df]
)
new_chat_btn.click(handle_new_chat, inputs=[conversation_store, current_conversation_id, current_lang_state], outputs=[current_conversation_id, conversation_store, chatbot, history_df])
history_df.select(load_conversation_from_df, inputs=[history_df, conversation_store, current_lang_state], outputs=[current_conversation_id, chatbot, system_prompt_textbox, model_dropdown, temperature_slider, textbox])
return components
def update_language(lang: str, components: dict):
"""
Returns a dictionary mapping components to their gr.update calls for language change.
"""
updates = {
components["new_chat_btn"]: gr.update(value=get_text('chat_new_chat_button', lang)),
components["history_df"]: gr.update(headers=["ID", get_text('chat_history_dataframe_header', lang)]),
components["chatbot"]: gr.update(placeholder=get_text('chat_chatbot_placeholder', lang)),
components["textbox"]: gr.update(placeholder=get_text('chat_textbox_placeholder', lang)),
components["submit_btn"]: gr.update(value=get_text('chat_submit_button', lang)),
components["recommended_title"]: gr.update(value=get_text('chat_recommended_dialogues_title', lang)),
components["recommended_dataset"]: gr.update(
samples=[[item["task"]] for item in get_recommended_inputs(lang)],
label=get_text('chat_recommended_dataset_label', lang),
headers=[get_text('chat_recommended_dataset_header', lang)],
),
components["system_prompt_textbox"]: gr.update(label=get_text('chat_system_prompt_label', lang), placeholder=get_text('chat_system_prompt_placeholder', lang)),
components["temperature_slider"]: gr.update(label=get_text('chat_temperature_slider_label', lang)),
}
return updates
|