ling-series-spaces / tab_chat.py
GitHub Action
Sync ling-space changes from GitHub commit 08fb219
875b439
raw
history blame
15.9 kB
from mimetypes import init
import gradio as gr
import uuid
from datetime import datetime
import pandas as pd
import re
from model_handler import ModelHandler
from config import CHAT_MODEL_SPECS, LING_1T
from recommand_config import get_recommended_inputs
from ui_components.model_selector import create_model_selector
from i18n import get_text
def on_app_load(request: gr.Request, history, conv_id, current_lang_state):
"""
Handles the application's initial state on load.
- Determines language from URL parameter.
- Loads conversation history or creates a new one.
"""
# --- Language Detection ---
query_params = dict(request.query_params)
url_lang = query_params.get("lang")
updated_lang = current_lang_state # Start with the default
if url_lang and url_lang in ["en", "zh"]:
updated_lang = url_lang
# --- History Loading Logic ---
if not history:
# First time ever, create a new conversation
conv_id = str(uuid.uuid4())
new_convo_title = get_text("chat_new_conversation_title", updated_lang)
new_convo = {
"id": conv_id,
"title": new_convo_title,
"messages": [],
"timestamp": datetime.now().isoformat(),
"system_prompt": "",
"model": CHAT_MODEL_SPECS[LING_1T]["display_name"],
"temperature": 0.7
}
history = [new_convo]
return (
conv_id,
history,
gr.update(value=get_history_df(history, updated_lang)),
[],
updated_lang,
)
if conv_id and any(c["id"] == conv_id for c in history):
# Valid last session, load it
for convo in history:
if convo["id"] == conv_id:
return (
conv_id,
history,
gr.update(value=get_history_df(history, updated_lang)),
convo["messages"],
updated_lang,
)
# Fallback to most recent conversation
most_recent_convo = history[0]
return (
most_recent_convo["id"],
history,
gr.update(value=get_history_df(history, updated_lang)),
most_recent_convo["messages"],
updated_lang,
)
def generate_conversation_title(messages, system_prompt):
"""
Generates a conversation title based on a heuristic, defensively handling
multiple possible message formats.
1. Tries to use the first user query.
2. Falls back to the system prompt.
3. Falls back to the current time.
"""
first_query = None
# Rule 1: Try to extract the first user query from various possible formats
if messages:
first_message = messages[0]
# Case 1: List[List[str]] -> [['user', 'assistant'], ...]
if isinstance(first_message, (list, tuple)) and len(first_message) > 0:
first_query = first_message[0]
# Case 2: List[Dict] (OpenAI format or others)
elif isinstance(first_message, dict):
if first_message.get("role") == "user":
first_query = first_message.get("content")
elif "text" in first_message: # Fallback for other observed formats
first_query = first_message["text"]
if first_query and isinstance(first_query, str):
# Split by common Chinese and English punctuation and whitespace
delimiters = r"[,。?!,?!.\s]+"
segments = re.split(delimiters, first_query)
title = ""
for seg in segments:
if seg:
title += seg
if len(title) > 3:
return title[:50] # Limit title length
if title:
return title[:50]
# Rule 2: Use the system prompt
if system_prompt:
return system_prompt[:32]
# Rule 3: Use the current time
return datetime.now().strftime("%H:%M")
def get_history_df(history, lang: str):
"""
Generates a language-aware DataFrame for the conversation history.
"""
if not history:
# Provide explicit column names for an empty DataFrame
return pd.DataFrame({'ID': pd.Series(dtype='str'), get_text('chat_history_dataframe_header', lang): pd.Series(dtype='str')})
df = pd.DataFrame(history)
# Ensure columns exist before renaming
if 'id' in df.columns and 'title' in df.columns:
header_text = get_text('chat_history_dataframe_header', lang)
# Ensure title is a string
df['title'] = df['title'].astype(str)
return df[['id', 'title']].rename(columns={'id': 'ID', 'title': header_text})
else:
return pd.DataFrame({'ID': pd.Series(dtype='str'), get_text('chat_history_dataframe_header', lang): pd.Series(dtype='str')})
def create_chat_tab(initial_lang: str, current_lang_state: gr.State):
model_handler = ModelHandler()
# Browser-side storage for conversation history and current ID
conversation_store = gr.BrowserState(default_value=[], storage_key="ling_conversation_history")
current_conversation_id = gr.BrowserState(default_value=None, storage_key="ling_current_conversation_id")
def handle_new_chat(history, current_conv_id, lang):
current_convo = next((c for c in history if c["id"] == current_conv_id), None) if history else None
if current_convo and not current_convo.get("messages", []):
return current_conv_id, history, [], gr.update(value=get_history_df(history, lang))
conv_id = str(uuid.uuid4())
new_convo_title = get_text('chat_new_conversation_title', lang)
new_convo = {
"id": conv_id, "title": new_convo_title,
"messages": [], "timestamp": datetime.now().isoformat(),
"system_prompt": "",
"model": CHAT_MODEL_SPECS[LING_1T]["display_name"],
"temperature": 0.7
}
updated_history = [new_convo] + (history or [])
return conv_id, updated_history, [], gr.update(value=get_history_df(updated_history, lang))
def load_conversation_from_df(df: pd.DataFrame, evt: gr.SelectData, history, lang):
if evt.index is None or len(df) == 0:
return None, [], "", CHAT_MODEL_SPECS[LING_1T]["display_name"], 0.7, ""
selected_id = df.iloc[evt.index[0]]['ID']
convo = next((c for c in history if c["id"] == selected_id), None)
if convo:
# Use .get() to provide defaults for old conversations
system_prompt = convo.get("system_prompt", "")
model = convo.get("model", CHAT_MODEL_SPECS[LING_1T]["display_name"])
temperature = convo.get("temperature", 0.7)
# Return updates for all components
return selected_id, convo["messages"], system_prompt, model, temperature, ""
# Fallback to creating a new chat if something goes wrong
new_id, _, new_msgs, _ = handle_new_chat(history, None, lang)
return new_id, new_msgs, "", CHAT_MODEL_SPECS[LING_1T]["display_name"], 0.7, ""
with gr.Row(equal_height=False, elem_id="indicator-chat-tab"):
with gr.Column(scale=1):
new_chat_btn = gr.Button(get_text('chat_new_chat_button', initial_lang))
history_df = gr.DataFrame(
value=get_history_df(conversation_store.value, initial_lang),
headers=["ID", get_text('chat_history_dataframe_header', initial_lang)],
datatype=["str", "str"],
interactive=False,
visible=True,
column_widths=["0%", "100%"]
)
with gr.Column(scale=4):
chatbot = gr.Chatbot(height=500, placeholder=get_text('chat_chatbot_placeholder', initial_lang))
with gr.Row():
textbox = gr.Textbox(placeholder=get_text('chat_textbox_placeholder', initial_lang), container=False, scale=7)
submit_btn = gr.Button(get_text('chat_submit_button', initial_lang), scale=1)
recommended_title = gr.Markdown(get_text('chat_recommended_dialogues_title', initial_lang))
recommended_dataset = gr.Dataset(
components=[gr.Textbox(visible=False)],
samples=[[item["task"]] for item in get_recommended_inputs(initial_lang)],
label=get_text('chat_recommended_dataset_label', initial_lang),
headers=[get_text('chat_recommended_dataset_header', initial_lang)],
)
with gr.Column(scale=1):
model_dropdown, model_description_markdown = create_model_selector(
model_specs=CHAT_MODEL_SPECS,
default_model_constant=LING_1T,
lang_state=current_lang_state,
initial_lang=initial_lang
)
system_prompt_textbox = gr.Textbox(label=get_text('chat_system_prompt_label', initial_lang), lines=5, placeholder=get_text('chat_system_prompt_placeholder', initial_lang))
temperature_slider = gr.Slider(minimum=0, maximum=1.0, value=0.7, step=0.1, label=get_text('chat_temperature_slider_label', initial_lang))
# --- Event Handlers --- #
def on_select_recommendation(evt: gr.SelectData, history, current_conv_id, lang):
selected_task = evt.value[0]
item = next((i for i in get_recommended_inputs(lang) if i["task"] == selected_task), None)
if not item:
return gr.update(), gr.update(), gr.update(), gr.update(), gr.update(), gr.update(), gr.update(), gr.update()
new_id, new_history, new_messages, history_df_update = handle_new_chat(history, current_conv_id, lang)
return (
new_id, new_history,
gr.update(value=item["model"]),
gr.update(value=item["system_prompt"]),
gr.update(value=item["temperature"]),
gr.update(value=item["user_message"]),
history_df_update,
new_messages
)
def chat_stream(conv_id, history, model_display_name, message, chat_history, system_prompt, temperature):
if not message:
yield chat_history
return
model_constant = next((k for k, v in CHAT_MODEL_SPECS.items() if v["display_name"] == model_display_name), LING_1T)
response_generator = model_handler.get_response(model_constant, message, chat_history, system_prompt, temperature)
for history_update in response_generator:
yield history_update
def on_chat_stream_complete(conv_id, history, final_chat_history, system_prompt, model_display_name, temperature, lang):
current_convo = next((c for c in history if c["id"] == conv_id), None)
if not current_convo:
return history, gr.update()
# Check if this is the first turn of a new conversation
new_convo_title_default = get_text('chat_new_conversation_title', lang)
is_new_conversation = current_convo["title"] == new_convo_title_default
# If it's a new conversation and we have messages, generate a title and save metadata
if is_new_conversation and len(final_chat_history) > len(current_convo.get("messages", [])):
current_convo["system_prompt"] = system_prompt
current_convo["model"] = model_display_name
current_convo["temperature"] = temperature
new_title = generate_conversation_title(final_chat_history, system_prompt)
current_convo["title"] = new_title
current_convo["messages"] = final_chat_history
current_convo["timestamp"] = datetime.now().isoformat()
history = sorted([c for c in history if c["id"] != conv_id] + [current_convo], key=lambda x: x["timestamp"], reverse=True)
return history, gr.update(value=get_history_df(history, lang))
# Store all components that need i18n updates
components = {
"new_chat_btn": new_chat_btn,
"history_df": history_df,
"chatbot": chatbot,
"textbox": textbox,
"submit_btn": submit_btn,
"recommended_title": recommended_title,
"recommended_dataset": recommended_dataset,
"system_prompt_textbox": system_prompt_textbox,
"temperature_slider": temperature_slider,
"model_dropdown": model_dropdown,
"model_description_markdown": model_description_markdown,
# Non-updatable components needed for event handlers and app.py
"conversation_store": conversation_store,
"current_conversation_id": current_conversation_id,
}
# Wire event handlers
recommended_dataset.select(on_select_recommendation, inputs=[conversation_store, current_conversation_id, current_lang_state], outputs=[current_conversation_id, conversation_store, model_dropdown, system_prompt_textbox, temperature_slider, textbox, history_df, chatbot], show_progress="hidden")
submit_btn.click(
chat_stream,
[current_conversation_id, conversation_store, model_dropdown, textbox, chatbot, system_prompt_textbox, temperature_slider],
[chatbot]
).then(
on_chat_stream_complete,
[current_conversation_id, conversation_store, chatbot, system_prompt_textbox, model_dropdown, temperature_slider, current_lang_state],
[conversation_store, history_df]
)
textbox.submit(
chat_stream,
[current_conversation_id, conversation_store, model_dropdown, textbox, chatbot, system_prompt_textbox, temperature_slider],
[chatbot]
).then(
on_chat_stream_complete,
[current_conversation_id, conversation_store, chatbot, system_prompt_textbox, model_dropdown, temperature_slider, current_lang_state],
[conversation_store, history_df]
)
new_chat_btn.click(handle_new_chat, inputs=[conversation_store, current_conversation_id, current_lang_state], outputs=[current_conversation_id, conversation_store, chatbot, history_df])
history_df.select(load_conversation_from_df, inputs=[history_df, conversation_store, current_lang_state], outputs=[current_conversation_id, chatbot, system_prompt_textbox, model_dropdown, temperature_slider, textbox])
return components
def update_language(lang: str, components: dict):
"""
Returns a dictionary mapping components to their gr.update calls for language change.
"""
updates = {
components["new_chat_btn"]: gr.update(value=get_text('chat_new_chat_button', lang)),
components["history_df"]: gr.update(headers=["ID", get_text('chat_history_dataframe_header', lang)]),
components["chatbot"]: gr.update(placeholder=get_text('chat_chatbot_placeholder', lang)),
components["textbox"]: gr.update(placeholder=get_text('chat_textbox_placeholder', lang)),
components["submit_btn"]: gr.update(value=get_text('chat_submit_button', lang)),
components["recommended_title"]: gr.update(value=get_text('chat_recommended_dialogues_title', lang)),
components["recommended_dataset"]: gr.update(
samples=[[item["task"]] for item in get_recommended_inputs(lang)],
label=get_text('chat_recommended_dataset_label', lang),
headers=[get_text('chat_recommended_dataset_header', lang)],
),
components["system_prompt_textbox"]: gr.update(label=get_text('chat_system_prompt_label', lang), placeholder=get_text('chat_system_prompt_placeholder', lang)),
components["temperature_slider"]: gr.update(label=get_text('chat_temperature_slider_label', lang)),
}
return updates