Spaces:
Running
Running
GitHub Action
commited on
Commit
·
74ebe5c
1
Parent(s):
b931367
Sync ling-space changes from GitHub commit 86dd25a
Browse files- model_handler.py +25 -4
- smart_writer_kit/__init__.py +1 -0
- smart_writer_kit/agent_for_inspiration_expansion.py +101 -0
- smart_writer_kit/agent_for_kb_update.py +75 -0
- smart_writer_kit/agent_for_outline_update.py +78 -0
- smart_writer_kit/agent_for_streaming_completion.py +56 -0
- tab_code.py +1 -1
- tab_smart_writer.py +77 -113
model_handler.py
CHANGED
|
@@ -68,6 +68,16 @@ class OpenAICompatibleProvider(ModelProvider):
|
|
| 68 |
# Initialize assistant's response in chat_history
|
| 69 |
chat_history.append({"role": "assistant", "content": ""}) # Placeholder for assistant's streaming response
|
| 70 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 71 |
try:
|
| 72 |
with httpx.stream(
|
| 73 |
"POST",
|
|
@@ -88,12 +98,14 @@ class OpenAICompatibleProvider(ModelProvider):
|
|
| 88 |
delta = data["choices"][0].get("delta", {})
|
| 89 |
content_chunk = delta.get("content")
|
| 90 |
if content_chunk:
|
|
|
|
| 91 |
chat_history[-1]["content"] += content_chunk
|
| 92 |
yield chat_history
|
| 93 |
except json.JSONDecodeError:
|
| 94 |
print(f"Error decoding JSON chunk: {chunk}")
|
|
|
|
| 95 |
except Exception as e:
|
| 96 |
-
print(f"Error during API call: {e}")
|
| 97 |
# Ensure the last message (assistant's placeholder) is updated with the error
|
| 98 |
if chat_history and chat_history[-1]["role"] == "assistant":
|
| 99 |
chat_history[-1]["content"] = f"An error occurred: {e}"
|
|
@@ -122,7 +134,15 @@ class OpenAICompatibleProvider(ModelProvider):
|
|
| 122 |
"stream": True,
|
| 123 |
"temperature": temperature,
|
| 124 |
}
|
| 125 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 126 |
try:
|
| 127 |
with httpx.stream("POST", f"{self.api_base}/chat/completions", headers=headers, json=json_data, timeout=120) as response:
|
| 128 |
response.raise_for_status()
|
|
@@ -137,9 +157,11 @@ class OpenAICompatibleProvider(ModelProvider):
|
|
| 137 |
delta = data["choices"][0].get("delta", {})
|
| 138 |
content_chunk = delta.get("content")
|
| 139 |
if content_chunk:
|
|
|
|
| 140 |
yield content_chunk
|
| 141 |
except json.JSONDecodeError:
|
| 142 |
print(f"Error decoding JSON chunk: {chunk}")
|
|
|
|
| 143 |
except Exception as e:
|
| 144 |
print(f"Error during API call: {e}")
|
| 145 |
yield f"An error occurred: {e}"
|
|
@@ -188,7 +210,7 @@ class ModelHandler:
|
|
| 188 |
|
| 189 |
yield from provider.get_response(model_id, message, chat_history, system_prompt, temperature)
|
| 190 |
|
| 191 |
-
def generate_code(self, system_prompt, user_prompt,
|
| 192 |
"""
|
| 193 |
Generates code using the specified model.
|
| 194 |
"""
|
|
@@ -197,7 +219,6 @@ class ModelHandler:
|
|
| 197 |
# Fallback if display name not found, maybe model_choice is the constant itself
|
| 198 |
model_constant = model_choice if model_choice in CHAT_MODEL_SPECS else "LING_1T"
|
| 199 |
|
| 200 |
-
|
| 201 |
model_spec = self.config.get(model_constant, {})
|
| 202 |
provider_name = model_spec.get("provider")
|
| 203 |
model_id = model_spec.get("model_id")
|
|
|
|
| 68 |
# Initialize assistant's response in chat_history
|
| 69 |
chat_history.append({"role": "assistant", "content": ""}) # Placeholder for assistant's streaming response
|
| 70 |
|
| 71 |
+
# 日志输出 - 在这里打印完整的请求数据(system, history, user, model_id)
|
| 72 |
+
print("\n>>> DEBUG: get_response")
|
| 73 |
+
print(">>> DEBUG: Sending request to OpenAI-compatible API")
|
| 74 |
+
print(">>> : System prompt:", repr(system_prompt))
|
| 75 |
+
print(">>> : Chat history:", repr(chat_history))
|
| 76 |
+
print(">>> : User message:", repr(message))
|
| 77 |
+
print(">>> : Model ID:", repr(model_id))
|
| 78 |
+
print(">>> : Temperature:", repr(temperature))
|
| 79 |
+
|
| 80 |
+
full_response = ""
|
| 81 |
try:
|
| 82 |
with httpx.stream(
|
| 83 |
"POST",
|
|
|
|
| 98 |
delta = data["choices"][0].get("delta", {})
|
| 99 |
content_chunk = delta.get("content")
|
| 100 |
if content_chunk:
|
| 101 |
+
full_response += content_chunk
|
| 102 |
chat_history[-1]["content"] += content_chunk
|
| 103 |
yield chat_history
|
| 104 |
except json.JSONDecodeError:
|
| 105 |
print(f"Error decoding JSON chunk: {chunk}")
|
| 106 |
+
print(f"DEBUG: Full code response: {full_response}")
|
| 107 |
except Exception as e:
|
| 108 |
+
print(f"XXX DEBUG: Error during API call: {e}")
|
| 109 |
# Ensure the last message (assistant's placeholder) is updated with the error
|
| 110 |
if chat_history and chat_history[-1]["role"] == "assistant":
|
| 111 |
chat_history[-1]["content"] = f"An error occurred: {e}"
|
|
|
|
| 134 |
"stream": True,
|
| 135 |
"temperature": temperature,
|
| 136 |
}
|
| 137 |
+
|
| 138 |
+
print("\n>>> DEBUG: get_code_response")
|
| 139 |
+
print(">>> DEBUG: Sending request to OpenAI-compatible API")
|
| 140 |
+
print(">>> : System prompt:", repr(system_prompt))
|
| 141 |
+
print(">>> : User message:", repr(user_prompt))
|
| 142 |
+
print(">>> : Model ID:", repr(model_id))
|
| 143 |
+
print(">>> : Temperature:", repr(temperature))
|
| 144 |
+
|
| 145 |
+
full_response = ""
|
| 146 |
try:
|
| 147 |
with httpx.stream("POST", f"{self.api_base}/chat/completions", headers=headers, json=json_data, timeout=120) as response:
|
| 148 |
response.raise_for_status()
|
|
|
|
| 157 |
delta = data["choices"][0].get("delta", {})
|
| 158 |
content_chunk = delta.get("content")
|
| 159 |
if content_chunk:
|
| 160 |
+
full_response += content_chunk
|
| 161 |
yield content_chunk
|
| 162 |
except json.JSONDecodeError:
|
| 163 |
print(f"Error decoding JSON chunk: {chunk}")
|
| 164 |
+
print(f"DEBUG: Full code response: {full_response}")
|
| 165 |
except Exception as e:
|
| 166 |
print(f"Error during API call: {e}")
|
| 167 |
yield f"An error occurred: {e}"
|
|
|
|
| 210 |
|
| 211 |
yield from provider.get_response(model_id, message, chat_history, system_prompt, temperature)
|
| 212 |
|
| 213 |
+
def generate_code(self, system_prompt, user_prompt, model_choice):
|
| 214 |
"""
|
| 215 |
Generates code using the specified model.
|
| 216 |
"""
|
|
|
|
| 219 |
# Fallback if display name not found, maybe model_choice is the constant itself
|
| 220 |
model_constant = model_choice if model_choice in CHAT_MODEL_SPECS else "LING_1T"
|
| 221 |
|
|
|
|
| 222 |
model_spec = self.config.get(model_constant, {})
|
| 223 |
provider_name = model_spec.get("provider")
|
| 224 |
model_id = model_spec.get("model_id")
|
smart_writer_kit/__init__.py
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
# This file makes the directory a Python package
|
smart_writer_kit/agent_for_inspiration_expansion.py
ADDED
|
@@ -0,0 +1,101 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import pandas as pd
|
| 3 |
+
from model_handler import ModelHandler
|
| 4 |
+
from config import LING_1T
|
| 5 |
+
|
| 6 |
+
def _format_df_to_string(df: pd.DataFrame, title: str) -> str:
|
| 7 |
+
"""Formats a pandas DataFrame into a markdown-like string for the prompt."""
|
| 8 |
+
if df is None or df.empty:
|
| 9 |
+
return ""
|
| 10 |
+
|
| 11 |
+
header = f"### {title}\n"
|
| 12 |
+
rows = []
|
| 13 |
+
for _, row in df.iterrows():
|
| 14 |
+
if 'Done' in df.columns and 'Task' in df.columns:
|
| 15 |
+
status = "[x]" if row['Done'] else "[ ]"
|
| 16 |
+
rows.append(f"- {status} {row['Task']}")
|
| 17 |
+
elif 'Term' in df.columns and 'Description' in df.columns:
|
| 18 |
+
rows.append(f"- **{row['Term']}**: {row['Description']}")
|
| 19 |
+
|
| 20 |
+
return header + "\n".join(rows) + "\n\n"
|
| 21 |
+
|
| 22 |
+
def fetch_inspiration_agent(prompt: str, editor_content: str, style: str, kb_df: pd.DataFrame, short_outline_df: pd.DataFrame, long_outline_df: pd.DataFrame):
|
| 23 |
+
"""
|
| 24 |
+
Agent for fetching inspiration options using a real LLM.
|
| 25 |
+
"""
|
| 26 |
+
print("\n[Agent][fetch_inspiration_agent] === 推理类型:灵感扩写 ===")
|
| 27 |
+
print("【发出的完整上下文】")
|
| 28 |
+
print("prompt:", repr(prompt))
|
| 29 |
+
print("editor_content:", repr(editor_content))
|
| 30 |
+
print("style:", repr(style))
|
| 31 |
+
print("kb_df:", repr(kb_df.to_dict("records")))
|
| 32 |
+
print("short_outline_df:", repr(short_outline_df.to_dict("records")))
|
| 33 |
+
print("long_outline_df:", repr(long_outline_df.to_dict("records")))
|
| 34 |
+
|
| 35 |
+
try:
|
| 36 |
+
# 1. Format context from UI inputs
|
| 37 |
+
style_context = f"### 整体章程\n{style}\n\n"
|
| 38 |
+
kb_context = _format_df_to_string(kb_df, "知识库")
|
| 39 |
+
short_outline_context = _format_df_to_string(short_outline_df, "当前章节大纲")
|
| 40 |
+
long_outline_context = _format_df_to_string(long_outline_df, "故事总纲")
|
| 41 |
+
|
| 42 |
+
# 2. Build System Prompt
|
| 43 |
+
system_prompt = (
|
| 44 |
+
"你是一个富有创意的长篇小说家,你的任务是根据提供的背景设定和当前文本,创作三个不同的、有创意的剧情发展方向。\n"
|
| 45 |
+
"请严格遵守以下格式:直接开始写第一个选项,然后用 `[END_OF_CHOICE]` 作为分隔符,接着写第二个选项,再用 `[END_OF_CHOICE]` 分隔,最后写第三个选项。不要有任何额外的解释或编号。\n"
|
| 46 |
+
"例如:\n"
|
| 47 |
+
"剧情发展一的内容...[END_OF_CHOICE]剧情发展二的内容...[END_OF_CHOICE]剧情发展三的内容..."
|
| 48 |
+
)
|
| 49 |
+
|
| 50 |
+
# 3. Build User Prompt
|
| 51 |
+
full_context = style_context + kb_context + long_outline_context + short_outline_context
|
| 52 |
+
user_prompt = (
|
| 53 |
+
f"### 背景设定与大纲\n{full_context}\n"
|
| 54 |
+
f"### 当前已写内容 (末尾部分)\n{editor_content[-2000:]}\n\n"
|
| 55 |
+
f"### 用户指令\n{prompt if prompt else '请基于当前内容,自然地延续剧情。'}"
|
| 56 |
+
)
|
| 57 |
+
|
| 58 |
+
# 4. Call LLM
|
| 59 |
+
model_handler = ModelHandler()
|
| 60 |
+
response_generator = model_handler.generate_code(
|
| 61 |
+
system_prompt=system_prompt,
|
| 62 |
+
user_prompt=user_prompt,
|
| 63 |
+
model_choice=LING_1T
|
| 64 |
+
)
|
| 65 |
+
|
| 66 |
+
full_response = "".join(chunk for chunk in response_generator)
|
| 67 |
+
|
| 68 |
+
print("【收到的完整上下文】")
|
| 69 |
+
print("full_response:", repr(full_response))
|
| 70 |
+
|
| 71 |
+
# 5. Parse response and update UI
|
| 72 |
+
choices = full_response.split("[END_OF_CHOICE]")
|
| 73 |
+
# Ensure we have exactly 3 choices, padding with placeholders if necessary
|
| 74 |
+
choices += ["(模型未生成足够选项)"] * (3 - len(choices))
|
| 75 |
+
|
| 76 |
+
print(f"[Agent] LLM Choices Received: {len(choices)}")
|
| 77 |
+
|
| 78 |
+
return gr.update(visible=True), choices[0].strip(), choices[1].strip(), choices[2].strip()
|
| 79 |
+
|
| 80 |
+
except Exception as e:
|
| 81 |
+
print(f"[Agent] Error fetching inspiration: {e}")
|
| 82 |
+
error_message = f"获取灵感时出错: {e}"
|
| 83 |
+
return gr.update(visible=True), error_message, "请检查日志", "请检查日志"
|
| 84 |
+
|
| 85 |
+
|
| 86 |
+
def apply_inspiration_agent(current_text: str, inspiration_text: str):
|
| 87 |
+
"""
|
| 88 |
+
Agent for applying selected inspiration to the editor.
|
| 89 |
+
"""
|
| 90 |
+
print("\n[Agent][apply_inspiration_agent] === 推理类型:应用灵感 ===")
|
| 91 |
+
print("【发出的完整上下文】")
|
| 92 |
+
print("current_text:", repr(current_text))
|
| 93 |
+
print("inspiration_text:", repr(inspiration_text))
|
| 94 |
+
if not current_text:
|
| 95 |
+
new_text = inspiration_text
|
| 96 |
+
else:
|
| 97 |
+
new_text = current_text + "\n\n" + inspiration_text
|
| 98 |
+
print("【收到的完整上下文】")
|
| 99 |
+
print("new_text:", repr(new_text))
|
| 100 |
+
# Return a tuple that unpacks into the outputs for the Gradio event handler
|
| 101 |
+
return new_text, gr.update(visible=False), ""
|
smart_writer_kit/agent_for_kb_update.py
ADDED
|
@@ -0,0 +1,75 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import pandas as pd
|
| 3 |
+
import json
|
| 4 |
+
from model_handler import ModelHandler
|
| 5 |
+
from config import LING_1T
|
| 6 |
+
|
| 7 |
+
def _format_kb_for_prompt(df: pd.DataFrame) -> str:
|
| 8 |
+
"""Formats the knowledge base DataFrame into a simple list for the prompt."""
|
| 9 |
+
if df is None or df.empty:
|
| 10 |
+
return "无。"
|
| 11 |
+
terms = [f"- {row['Term']}" for _, row in df.iterrows()]
|
| 12 |
+
return "\n".join(terms)
|
| 13 |
+
|
| 14 |
+
def suggest_new_kb_terms_agent(kb_df: pd.DataFrame, editor_content: str):
|
| 15 |
+
"""
|
| 16 |
+
Agent to extract new terms from the text to recommend for the knowledge base using a real LLM.
|
| 17 |
+
"""
|
| 18 |
+
|
| 19 |
+
if editor_content is None or len(editor_content.strip()) < 50:
|
| 20 |
+
print("[Agent] Editor content too short, skipping KB suggestion.")
|
| 21 |
+
# Return empty data and keep components hidden
|
| 22 |
+
return gr.update(value=[], visible=False), gr.update(visible=False)
|
| 23 |
+
|
| 24 |
+
try:
|
| 25 |
+
# 1. Prepare Prompts
|
| 26 |
+
system_prompt = (
|
| 27 |
+
"你是一个实体提取机器人。你的任务是从给定文本中识别出新的、重要的、值得记录的专有名词(如人名、地名、组织、物品)或核心概念,并为它们提供一句简洁的描述。\n"
|
| 28 |
+
"你的回答必须是一个遵循以下规则的 JSON 数组:\n"
|
| 29 |
+
"1. 数组中的每个元素都是一个对象。\n"
|
| 30 |
+
"2. 每个对象必须包含两个键:`Term` (词条名) 和 `Description` (描述)。\n"
|
| 31 |
+
"3. 不要提取已经存在于'现有知识库'中的词条。\n"
|
| 32 |
+
"4. 最多返回 5 个最重要的词条。\n"
|
| 33 |
+
"5. 不要返回除了这个 JSON 数组之外的任何其他文本、解释或代码块标记。"
|
| 34 |
+
)
|
| 35 |
+
|
| 36 |
+
kb_str = _format_kb_for_prompt(kb_df)
|
| 37 |
+
user_prompt = (
|
| 38 |
+
f"### 现有知识库\n{kb_str}\n\n"
|
| 39 |
+
f"### 当前文本\n{editor_content[-4000:]}\n\n"
|
| 40 |
+
"### 指令\n请根据'当前文本',分析并提取出新的知识库词条,并返回 JSON 数组。"
|
| 41 |
+
)
|
| 42 |
+
|
| 43 |
+
# 2. Call LLM
|
| 44 |
+
model_handler = ModelHandler()
|
| 45 |
+
response_generator = model_handler.generate_code(
|
| 46 |
+
system_prompt=system_prompt,
|
| 47 |
+
user_prompt=user_prompt,
|
| 48 |
+
model_choice=LING_1T
|
| 49 |
+
)
|
| 50 |
+
full_response = "".join(chunk for chunk in response_generator)
|
| 51 |
+
|
| 52 |
+
# 3. Parse JSON and format for DataFrame
|
| 53 |
+
print("【收到的完整上下文】")
|
| 54 |
+
print("full_response:", repr(full_response))
|
| 55 |
+
|
| 56 |
+
if full_response.strip().startswith("```json"):
|
| 57 |
+
full_response = full_response.strip()[7:-3].strip()
|
| 58 |
+
|
| 59 |
+
suggested_terms = json.loads(full_response)
|
| 60 |
+
|
| 61 |
+
# Convert list of dicts to list of lists for Gradio Dataframe
|
| 62 |
+
df_data = [[item.get("Term", ""), item.get("Description", "")] for item in suggested_terms]
|
| 63 |
+
|
| 64 |
+
print("【收到的完整上下文】")
|
| 65 |
+
print("suggested_terms:", repr(suggested_terms))
|
| 66 |
+
|
| 67 |
+
# Make components visible and return data
|
| 68 |
+
return gr.update(value=df_data, visible=True), gr.update(visible=True)
|
| 69 |
+
|
| 70 |
+
except json.JSONDecodeError:
|
| 71 |
+
print(f"[Agent] Error: Failed to decode JSON from LLM response for KB: {full_response}")
|
| 72 |
+
return gr.update(visible=False), gr.update(visible=False)
|
| 73 |
+
except Exception as e:
|
| 74 |
+
print(f"[Agent] Error suggesting new KB terms: {e}")
|
| 75 |
+
return gr.update(visible=False), gr.update(visible=False)
|
smart_writer_kit/agent_for_outline_update.py
ADDED
|
@@ -0,0 +1,78 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import pandas as pd
|
| 3 |
+
import json
|
| 4 |
+
from model_handler import ModelHandler
|
| 5 |
+
from config import LING_FLASH_2_0
|
| 6 |
+
|
| 7 |
+
def _format_outline_for_prompt(df: pd.DataFrame) -> str:
|
| 8 |
+
"""Formats the outline DataFrame into a simple numbered list for the prompt."""
|
| 9 |
+
if df is None or df.empty:
|
| 10 |
+
return "无任务。"
|
| 11 |
+
|
| 12 |
+
tasks = [f"{i+1}. {row['Task']}" for i, row in df.iterrows()]
|
| 13 |
+
return "\n".join(tasks)
|
| 14 |
+
|
| 15 |
+
def update_outline_status_agent(short_outline_df: pd.DataFrame, editor_content: str):
|
| 16 |
+
"""
|
| 17 |
+
Agent to analyze text and update the outline's completion status using a real LLM.
|
| 18 |
+
"""
|
| 19 |
+
|
| 20 |
+
if editor_content is None or len(editor_content.strip()) < 20:
|
| 21 |
+
return short_outline_df # Return original df
|
| 22 |
+
|
| 23 |
+
try:
|
| 24 |
+
# 1. Prepare Prompts
|
| 25 |
+
system_prompt = (
|
| 26 |
+
"你是一个任务分析机器人。请仔细阅读用户提供的'已完成大纲'和'当前文本',判断大纲中的每项任务是否已经在文本中被完成。\n"
|
| 27 |
+
"你的回答必须是一个遵循以下规则的 JSON 对象:\n"
|
| 28 |
+
"1. JSON 的 key 是大纲中的任务原文。\n"
|
| 29 |
+
"2. JSON 的 value 是一个布尔值 (`true` 或 `false`),`true` 代表任务已完成,`false` 代表未完成。\n"
|
| 30 |
+
"3. 不要返回除了这个 JSON 对象之外的任何其他文本、解释或代码块标记。"
|
| 31 |
+
)
|
| 32 |
+
|
| 33 |
+
outline_str = _format_outline_for_prompt(short_outline_df)
|
| 34 |
+
user_prompt = (
|
| 35 |
+
f"### 已有大纲\n{outline_str}\n\n"
|
| 36 |
+
f"### 当前文本\n{editor_content[-4000:]}\n\n"
|
| 37 |
+
"### 指令\n请根据上述'当前文本',分析'已有大纲'中的任务完成情况,并返回 JSON 对象。"
|
| 38 |
+
)
|
| 39 |
+
|
| 40 |
+
# 2. Call LLM
|
| 41 |
+
model_handler = ModelHandler()
|
| 42 |
+
response_generator = model_handler.generate_code(
|
| 43 |
+
system_prompt=system_prompt,
|
| 44 |
+
user_prompt=user_prompt,
|
| 45 |
+
model_choice=LING_FLASH_2_0
|
| 46 |
+
)
|
| 47 |
+
full_response = "".join(chunk for chunk in response_generator)
|
| 48 |
+
|
| 49 |
+
# 3. Parse JSON and Update DataFrame
|
| 50 |
+
print("【收到的完整上下文】")
|
| 51 |
+
print("full_response:", repr(full_response))
|
| 52 |
+
|
| 53 |
+
# Clean up potential markdown code block
|
| 54 |
+
if full_response.strip().startswith("```json"):
|
| 55 |
+
full_response = full_response.strip()[7:-3].strip()
|
| 56 |
+
|
| 57 |
+
completion_status = json.loads(full_response)
|
| 58 |
+
|
| 59 |
+
# Create a copy to avoid modifying the original df in place
|
| 60 |
+
updated_df = short_outline_df.copy()
|
| 61 |
+
|
| 62 |
+
for i, row in updated_df.iterrows():
|
| 63 |
+
task_text = row['Task']
|
| 64 |
+
if task_text in completion_status:
|
| 65 |
+
updated_df.at[i, 'Done'] = bool(completion_status[task_text])
|
| 66 |
+
|
| 67 |
+
print("【收到的完整上下文】")
|
| 68 |
+
print("updated_df:\n", updated_df.to_string())
|
| 69 |
+
return updated_df
|
| 70 |
+
|
| 71 |
+
except json.JSONDecodeError:
|
| 72 |
+
print(f"[Agent] Error: Failed to decode JSON from LLM response: {full_response}")
|
| 73 |
+
# On JSON error, we don't want to change anything.
|
| 74 |
+
return short_outline_df
|
| 75 |
+
except Exception as e:
|
| 76 |
+
print(f"[Agent] Error updating outline status: {e}")
|
| 77 |
+
# On other errors, also return the original dataframe.
|
| 78 |
+
return short_outline_df
|
smart_writer_kit/agent_for_streaming_completion.py
ADDED
|
@@ -0,0 +1,56 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from model_handler import ModelHandler
|
| 2 |
+
from config import LING_FLASH_2_0
|
| 3 |
+
|
| 4 |
+
def fetch_flow_suggestion_agent(editor_content: str):
|
| 5 |
+
"""
|
| 6 |
+
Agent for fetching a short, real-time continuation.
|
| 7 |
+
This agent calls a real LLM.
|
| 8 |
+
"""
|
| 9 |
+
|
| 10 |
+
if not editor_content or len(editor_content.strip()) < 5:
|
| 11 |
+
return "(请输入更多内容以获取建议...)"
|
| 12 |
+
|
| 13 |
+
try:
|
| 14 |
+
model_handler = ModelHandler()
|
| 15 |
+
|
| 16 |
+
# For a simple continuation, we can use a concise system prompt.
|
| 17 |
+
system_prompt = "你是一个写作助手,请根据用户输入的内容,紧接着写一句简短、流畅的续写。不要重复用户已输入的内容,直接开始写你续写的部分即可。**尤其关注用户输入的最后几个字**。"
|
| 18 |
+
|
| 19 |
+
|
| 20 |
+
|
| 21 |
+
# We use editor_content as the user prompt.
|
| 22 |
+
# Let's take the last N characters to be more efficient.
|
| 23 |
+
user_prompt = editor_content[-1000:]
|
| 24 |
+
|
| 25 |
+
# Use generate_code as it's a simple generator for direct content.
|
| 26 |
+
# We need to provide a dummy code_type and a model_choice.
|
| 27 |
+
# The model_choice here is the display name, but we can pass the constant.
|
| 28 |
+
response_generator = model_handler.generate_code(
|
| 29 |
+
system_prompt=system_prompt,
|
| 30 |
+
user_prompt=user_prompt,
|
| 31 |
+
model_choice=LING_FLASH_2_0
|
| 32 |
+
)
|
| 33 |
+
|
| 34 |
+
# Assemble the streamed response
|
| 35 |
+
full_response = "".join(chunk for chunk in response_generator)
|
| 36 |
+
print("【收到的完整上下文】")
|
| 37 |
+
print("full_response:", repr(full_response))
|
| 38 |
+
return full_response.strip()
|
| 39 |
+
|
| 40 |
+
except Exception as e:
|
| 41 |
+
print(f"[Agent] Error fetching flow suggestion: {e}")
|
| 42 |
+
return f"(获取建议时出错: {e})"
|
| 43 |
+
|
| 44 |
+
|
| 45 |
+
def accept_flow_suggestion_agent(current_text: str, suggestion: str):
|
| 46 |
+
"""
|
| 47 |
+
Agent for accepting a flow suggestion.
|
| 48 |
+
"""
|
| 49 |
+
|
| 50 |
+
if not suggestion or "等待输入" in suggestion or "出错" in suggestion:
|
| 51 |
+
result = current_text
|
| 52 |
+
else:
|
| 53 |
+
result = current_text + suggestion
|
| 54 |
+
print("【收到的完整上下文】")
|
| 55 |
+
print("result:", repr(result))
|
| 56 |
+
return result
|
tab_code.py
CHANGED
|
@@ -78,7 +78,7 @@ def generate_code(code_type, model_choice, user_prompt, chatbot_history):
|
|
| 78 |
buffer = ""
|
| 79 |
is_thinking = False
|
| 80 |
|
| 81 |
-
for code_chunk in model_handler.generate_code(system_prompt, user_prompt,
|
| 82 |
full_code_with_think += code_chunk
|
| 83 |
buffer += code_chunk
|
| 84 |
|
|
|
|
| 78 |
buffer = ""
|
| 79 |
is_thinking = False
|
| 80 |
|
| 81 |
+
for code_chunk in model_handler.generate_code(system_prompt, user_prompt, model_choice):
|
| 82 |
full_code_with_think += code_chunk
|
| 83 |
buffer += code_chunk
|
| 84 |
|
tab_smart_writer.py
CHANGED
|
@@ -1,8 +1,11 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
import time
|
| 3 |
-
import
|
|
|
|
|
|
|
|
|
|
| 4 |
|
| 5 |
-
# --- Mock Data ---
|
| 6 |
|
| 7 |
MOCK_STYLE = """风格:赛博朋克 / 黑色电影
|
| 8 |
视角:第三人称限制视角(主角:凯)
|
|
@@ -33,97 +36,23 @@ MOCK_LONG_TERM_OUTLINE = [
|
|
| 33 |
[False, "与荒坂公司的最终决战。"]
|
| 34 |
]
|
| 35 |
|
| 36 |
-
|
| 37 |
-
"霓虹灯光在雨后的路面上破碎成无数光斑,凯拉紧了风衣的领口,义体手臂在寒风中隐隐作痛。来生酒吧的招牌在雾气中若隐若现,像是一只在黑暗中窥视的电子眼。",
|
| 38 |
-
"\"你来晚了。\"接头人的声音经过变声器处理,听起来像是指甲划过玻璃。他坐在阴影里,只有指尖的一点红光在闪烁——那是他正在抽的廉价合成烟。",
|
| 39 |
-
"突如其来的爆炸声震碎了酒吧的玻璃,人群尖叫着四散奔逃。凯本能地拔出了腰间的动能手枪,他的视觉系统瞬间切换到了战斗模式,周围的一切都变成了数据流。"
|
| 40 |
-
]
|
| 41 |
-
|
| 42 |
-
MOCK_FLOW_SUGGESTIONS = [
|
| 43 |
-
"他感觉到了...",
|
| 44 |
-
"空气中弥漫着...",
|
| 45 |
-
"那是他从未见过的...",
|
| 46 |
-
"就在这一瞬间..."
|
| 47 |
-
]
|
| 48 |
-
|
| 49 |
-
# --- Logic Functions ---
|
| 50 |
-
|
| 51 |
def get_stats(text):
|
| 52 |
-
"""
|
| 53 |
if not text:
|
| 54 |
return "0 Words | 0 mins"
|
| 55 |
-
words = len(text)
|
| 56 |
-
read_time = max(1, words //
|
| 57 |
return f"{words} Words | ~{read_time} mins"
|
| 58 |
|
| 59 |
-
def fetch_inspiration(prompt):
|
| 60 |
-
"""Simulate fetching inspiration options based on user prompt."""
|
| 61 |
-
time.sleep(1)
|
| 62 |
-
|
| 63 |
-
# Simple Mock Logic based on prompt keywords
|
| 64 |
-
if prompt and "打斗" in prompt:
|
| 65 |
-
opts = [
|
| 66 |
-
"凯侧身闪过那一记重拳,义体关节发出尖锐的摩擦声。他顺势抓住对方的手腕,电流顺着接触点瞬间爆发。",
|
| 67 |
-
"激光刃切开空气,留下一道灼热的残影。凯没有退缩,他的视觉系统已经计算出了对方唯一的破绽。",
|
| 68 |
-
"周围的空气仿佛凝固了,只剩下心跳声和能量枪充能的嗡嗡声。谁先动,谁就会死。"
|
| 69 |
-
]
|
| 70 |
-
elif prompt and "风景" in prompt:
|
| 71 |
-
opts = [
|
| 72 |
-
"酸雨冲刷着生锈的金属外墙,流下一道道黑色的泪痕。远处的全息广告牌在雨雾中显得格外刺眼。",
|
| 73 |
-
"清晨的阳光穿透厚重的雾霾,无力地洒在贫民窟的屋顶上。这里没有希望,只有生存。",
|
| 74 |
-
"夜之城的地下就像是一个巨大的迷宫,管道交错,蒸汽弥漫,老鼠和瘾君子在阴影中通过眼神交流。"
|
| 75 |
-
]
|
| 76 |
-
else:
|
| 77 |
-
opts = MOCK_INSPIRATIONS
|
| 78 |
-
|
| 79 |
-
return gr.update(visible=True), opts[0], opts[1], opts[2]
|
| 80 |
-
|
| 81 |
-
def apply_inspiration(current_text, inspiration_text):
|
| 82 |
-
"""Append selected inspiration to the editor."""
|
| 83 |
-
if not current_text:
|
| 84 |
-
new_text = inspiration_text
|
| 85 |
-
else:
|
| 86 |
-
new_text = current_text + "\n\n" + inspiration_text
|
| 87 |
-
return new_text, gr.update(visible=False), "" # Clear prompt
|
| 88 |
-
|
| 89 |
def dismiss_inspiration():
|
| 90 |
return gr.update(visible=False)
|
| 91 |
|
| 92 |
-
def fetch_flow_suggestion(current_text):
|
| 93 |
-
"""Simulate fetching a short continuation."""
|
| 94 |
-
# If text ends with newline, maybe don't suggest? Or suggest new paragraph start.
|
| 95 |
-
time.sleep(0.5)
|
| 96 |
-
return random.choice(MOCK_FLOW_SUGGESTIONS)
|
| 97 |
-
|
| 98 |
-
def accept_flow_suggestion(current_text, suggestion):
|
| 99 |
-
if not suggestion or "等待输入" in suggestion:
|
| 100 |
-
return current_text
|
| 101 |
-
return current_text + suggestion
|
| 102 |
-
|
| 103 |
-
def refresh_context(current_outline):
|
| 104 |
-
"""Mock refreshing the outline context (auto-complete task or add new one)."""
|
| 105 |
-
new_outline = [row[:] for row in current_outline]
|
| 106 |
-
|
| 107 |
-
# Try to complete the first pending task
|
| 108 |
-
task_completed = False
|
| 109 |
-
for row in new_outline:
|
| 110 |
-
if not row[0]:
|
| 111 |
-
row[0] = True
|
| 112 |
-
task_completed = True
|
| 113 |
-
break
|
| 114 |
-
|
| 115 |
-
# If all done, or randomly, add a new event
|
| 116 |
-
if not task_completed or random.random() > 0.7:
|
| 117 |
-
new_outline.append([False, f"新的动态事件: 突发情况 #{random.randint(100, 999)}"])
|
| 118 |
-
|
| 119 |
-
return new_outline
|
| 120 |
-
|
| 121 |
# --- UI Construction ---
|
| 122 |
|
| 123 |
def create_smart_writer_tab():
|
| 124 |
-
|
| 125 |
-
|
| 126 |
-
btn_refresh_context_trigger = gr.Button(visible=False, elem_id="btn_refresh_context_trigger")
|
| 127 |
|
| 128 |
with gr.Row(equal_height=False, elem_id="indicator-writing-tab"):
|
| 129 |
# --- Left Column: Entity Console ---
|
|
@@ -147,6 +76,18 @@ def create_smart_writer_tab():
|
|
| 147 |
label="知识库",
|
| 148 |
wrap=True
|
| 149 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 150 |
|
| 151 |
with gr.Accordion("当前章节大纲 (Short-Term)", open=True):
|
| 152 |
short_outline_input = gr.Dataframe(
|
|
@@ -157,6 +98,8 @@ def create_smart_writer_tab():
|
|
| 157 |
label="当前章节大纲",
|
| 158 |
col_count=(2, "fixed"),
|
| 159 |
)
|
|
|
|
|
|
|
| 160 |
|
| 161 |
with gr.Accordion("故事总纲 (Long-Term)", open=False):
|
| 162 |
long_outline_input = gr.Dataframe(
|
|
@@ -173,7 +116,7 @@ def create_smart_writer_tab():
|
|
| 173 |
# Toolbar
|
| 174 |
with gr.Row(elem_classes=["toolbar"]):
|
| 175 |
stats_display = gr.Markdown("0 Words | 0 mins")
|
| 176 |
-
inspiration_btn = gr.Button("✨
|
| 177 |
|
| 178 |
# 主要编辑器区域
|
| 179 |
editor = gr.Textbox(
|
|
@@ -188,14 +131,17 @@ def create_smart_writer_tab():
|
|
| 188 |
# Flow Suggestion
|
| 189 |
with gr.Row(variant="panel"):
|
| 190 |
flow_suggestion_display = gr.Textbox(
|
| 191 |
-
label="AI 实时续写建议 (按 Tab 采纳)",
|
| 192 |
-
value="(等待输入...)",
|
| 193 |
interactive=False,
|
| 194 |
scale=4,
|
| 195 |
elem_classes=["flow-suggestion-box"]
|
| 196 |
)
|
| 197 |
-
accept_flow_btn = gr.Button("采纳", scale=1, elem_id='btn-action-accept-flow')
|
| 198 |
-
refresh_flow_btn = gr.Button("换一个", scale=1)
|
|
|
|
|
|
|
|
|
|
| 199 |
|
| 200 |
# Inspiration Modal
|
| 201 |
with gr.Group(visible=False) as inspiration_modal:
|
|
@@ -206,12 +152,12 @@ def create_smart_writer_tab():
|
|
| 206 |
placeholder="例如:写一段激烈的打斗 / 描写赛博朋克夜景...",
|
| 207 |
lines=1
|
| 208 |
)
|
| 209 |
-
refresh_inspiration_btn = gr.Button("生成选项")
|
| 210 |
|
| 211 |
with gr.Row():
|
| 212 |
-
opt1_btn = gr.Button(
|
| 213 |
-
opt2_btn = gr.Button(
|
| 214 |
-
opt3_btn = gr.Button(
|
| 215 |
cancel_insp_btn = gr.Button("取消")
|
| 216 |
|
| 217 |
# --- Interactions ---
|
|
@@ -220,43 +166,61 @@ def create_smart_writer_tab():
|
|
| 220 |
editor.change(fn=get_stats, inputs=editor, outputs=stats_display)
|
| 221 |
|
| 222 |
# 2. Inspiration Workflow
|
| 223 |
-
# Open Modal (
|
| 224 |
-
|
| 225 |
-
|
| 226 |
-
outputs=[inspiration_modal, inspiration_prompt_input]
|
| 227 |
-
)
|
| 228 |
|
| 229 |
# Generate Options based on Prompt
|
| 230 |
refresh_inspiration_btn.click(
|
| 231 |
-
fn=
|
| 232 |
-
inputs=[inspiration_prompt_input],
|
| 233 |
outputs=[inspiration_modal, opt1_btn, opt2_btn, opt3_btn]
|
| 234 |
)
|
| 235 |
|
| 236 |
# Apply Option
|
| 237 |
for btn in [opt1_btn, opt2_btn, opt3_btn]:
|
| 238 |
btn.click(
|
| 239 |
-
fn=
|
| 240 |
inputs=[editor, btn],
|
| 241 |
outputs=[editor, inspiration_modal, inspiration_prompt_input]
|
| 242 |
)
|
| 243 |
|
| 244 |
-
cancel_insp_btn.click(fn=dismiss_inspiration, outputs=inspiration_modal)
|
| 245 |
-
|
| 246 |
-
# 3. Flow Suggestion
|
| 247 |
-
|
| 248 |
-
|
| 249 |
-
|
| 250 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 251 |
accept_flow_fn_inputs = [editor, flow_suggestion_display]
|
| 252 |
accept_flow_fn_outputs = [editor]
|
| 253 |
-
|
| 254 |
-
accept_flow_btn.click(fn=accept_flow_suggestion, inputs=accept_flow_fn_inputs, outputs=accept_flow_fn_outputs)
|
| 255 |
-
btn_accept_flow_trigger.click(fn=accept_flow_suggestion, inputs=accept_flow_fn_inputs, outputs=accept_flow_fn_outputs)
|
| 256 |
|
| 257 |
-
# 4. Context
|
| 258 |
-
|
| 259 |
-
fn=
|
| 260 |
-
inputs=[short_outline_input],
|
| 261 |
outputs=[short_outline_input]
|
| 262 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
import time
|
| 3 |
+
from smart_writer_kit.agent_for_streaming_completion import fetch_flow_suggestion_agent, accept_flow_suggestion_agent
|
| 4 |
+
from smart_writer_kit.agent_for_inspiration_expansion import fetch_inspiration_agent, apply_inspiration_agent
|
| 5 |
+
from smart_writer_kit.agent_for_outline_update import update_outline_status_agent
|
| 6 |
+
from smart_writer_kit.agent_for_kb_update import suggest_new_kb_terms_agent
|
| 7 |
|
| 8 |
+
# --- Mock Data (for UI population only) ---
|
| 9 |
|
| 10 |
MOCK_STYLE = """风格:赛博朋克 / 黑色电影
|
| 11 |
视角:第三人称限制视角(主角:凯)
|
|
|
|
| 36 |
[False, "与荒坂公司的最终决战。"]
|
| 37 |
]
|
| 38 |
|
| 39 |
+
# --- UI Helper Functions ---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 40 |
def get_stats(text):
|
| 41 |
+
"""Calculate word count and read time."""
|
| 42 |
if not text:
|
| 43 |
return "0 Words | 0 mins"
|
| 44 |
+
words = len(text.split())
|
| 45 |
+
read_time = max(1, words // 200) # Average reading speed
|
| 46 |
return f"{words} Words | ~{read_time} mins"
|
| 47 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 48 |
def dismiss_inspiration():
|
| 49 |
return gr.update(visible=False)
|
| 50 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 51 |
# --- UI Construction ---
|
| 52 |
|
| 53 |
def create_smart_writer_tab():
|
| 54 |
+
debounce_state = gr.State({"last_change": 0, "active": False})
|
| 55 |
+
debounce_timer = gr.Timer(0.5, active=False)
|
|
|
|
| 56 |
|
| 57 |
with gr.Row(equal_height=False, elem_id="indicator-writing-tab"):
|
| 58 |
# --- Left Column: Entity Console ---
|
|
|
|
| 76 |
label="知识库",
|
| 77 |
wrap=True
|
| 78 |
)
|
| 79 |
+
with gr.Row():
|
| 80 |
+
btn_suggest_kb = gr.Button("🔍 提取新词条", size="sm")
|
| 81 |
+
|
| 82 |
+
md_suggested_terms_header = gr.Markdown("#### 推荐词条", visible=False) # Placeholder for suggested terms
|
| 83 |
+
suggested_kb_dataframe = gr.Dataframe(
|
| 84 |
+
headers=["Term", "Description"],
|
| 85 |
+
datatype=["str", "str"],
|
| 86 |
+
visible=False, # Initially hidden
|
| 87 |
+
interactive=False,
|
| 88 |
+
label="推荐词条"
|
| 89 |
+
)
|
| 90 |
+
|
| 91 |
|
| 92 |
with gr.Accordion("当前章节大纲 (Short-Term)", open=True):
|
| 93 |
short_outline_input = gr.Dataframe(
|
|
|
|
| 98 |
label="当前章节大纲",
|
| 99 |
col_count=(2, "fixed"),
|
| 100 |
)
|
| 101 |
+
with gr.Row():
|
| 102 |
+
btn_sync_outline = gr.Button("🔄 同步状态", size="sm")
|
| 103 |
|
| 104 |
with gr.Accordion("故事总纲 (Long-Term)", open=False):
|
| 105 |
long_outline_input = gr.Dataframe(
|
|
|
|
| 116 |
# Toolbar
|
| 117 |
with gr.Row(elem_classes=["toolbar"]):
|
| 118 |
stats_display = gr.Markdown("0 Words | 0 mins")
|
| 119 |
+
inspiration_btn = gr.Button("✨ 继续整段 (Cmd/Ctrl+Enter)", size="sm", variant="primary", elem_id="btn-action-create-paragraph")
|
| 120 |
|
| 121 |
# 主要编辑器区域
|
| 122 |
editor = gr.Textbox(
|
|
|
|
| 131 |
# Flow Suggestion
|
| 132 |
with gr.Row(variant="panel"):
|
| 133 |
flow_suggestion_display = gr.Textbox(
|
| 134 |
+
label="AI 实时续写建议 (按 Tab 采纳)",
|
| 135 |
+
value="(等待输入...)",
|
| 136 |
interactive=False,
|
| 137 |
scale=4,
|
| 138 |
elem_classes=["flow-suggestion-box"]
|
| 139 |
)
|
| 140 |
+
accept_flow_btn = gr.Button("采纳(Tab)", scale=1, elem_id='btn-action-accept-flow')
|
| 141 |
+
refresh_flow_btn = gr.Button("换一个(Shift+Tab)", scale=1, elem_id='btn-action-change-flow')
|
| 142 |
+
|
| 143 |
+
# Debounce Progress
|
| 144 |
+
debounce_progress = gr.HTML(value="", visible=False)
|
| 145 |
|
| 146 |
# Inspiration Modal
|
| 147 |
with gr.Group(visible=False) as inspiration_modal:
|
|
|
|
| 152 |
placeholder="例如:写一段激烈的打斗 / 描写赛博朋克夜景...",
|
| 153 |
lines=1
|
| 154 |
)
|
| 155 |
+
refresh_inspiration_btn = gr.Button("生成选项(Shift+Enter)")
|
| 156 |
|
| 157 |
with gr.Row():
|
| 158 |
+
opt1_btn = gr.Button("...", elem_classes=["inspiration-card"])
|
| 159 |
+
opt2_btn = gr.Button("...", elem_classes=["inspiration-card"])
|
| 160 |
+
opt3_btn = gr.Button("...", elem_classes=["inspiration-card"])
|
| 161 |
cancel_insp_btn = gr.Button("取消")
|
| 162 |
|
| 163 |
# --- Interactions ---
|
|
|
|
| 166 |
editor.change(fn=get_stats, inputs=editor, outputs=stats_display)
|
| 167 |
|
| 168 |
# 2. Inspiration Workflow
|
| 169 |
+
# Open Modal (triggered by visible button or hidden trigger button for Cmd+Enter)
|
| 170 |
+
open_inspiration_modal_fn = lambda: (gr.update(visible=True), "")
|
| 171 |
+
inspiration_btn.click(fn=open_inspiration_modal_fn, outputs=[inspiration_modal, inspiration_prompt_input])
|
|
|
|
|
|
|
| 172 |
|
| 173 |
# Generate Options based on Prompt
|
| 174 |
refresh_inspiration_btn.click(
|
| 175 |
+
fn=fetch_inspiration_agent,
|
| 176 |
+
inputs=[inspiration_prompt_input, editor, style_input, kb_input, short_outline_input, long_outline_input],
|
| 177 |
outputs=[inspiration_modal, opt1_btn, opt2_btn, opt3_btn]
|
| 178 |
)
|
| 179 |
|
| 180 |
# Apply Option
|
| 181 |
for btn in [opt1_btn, opt2_btn, opt3_btn]:
|
| 182 |
btn.click(
|
| 183 |
+
fn=apply_inspiration_agent,
|
| 184 |
inputs=[editor, btn],
|
| 185 |
outputs=[editor, inspiration_modal, inspiration_prompt_input]
|
| 186 |
)
|
| 187 |
|
| 188 |
+
cancel_insp_btn.click(fn=dismiss_inspiration, outputs=inspiration_modal, show_progress="hidden")
|
| 189 |
+
|
| 190 |
+
# 3. Flow Suggestion with Debounce
|
| 191 |
+
def start_debounce(editor_content):
|
| 192 |
+
return {"last_change": time.time(), "active": True}, gr.update(active=True), gr.update(visible=True, value="<progress value='0' max='100'></progress> 补全中... 3.0s")
|
| 193 |
+
|
| 194 |
+
def update_debounce(debounce_state, editor_content):
|
| 195 |
+
if not debounce_state["active"]:
|
| 196 |
+
return gr.update(), gr.update(), debounce_state, gr.update()
|
| 197 |
+
elapsed = time.time() - debounce_state["last_change"]
|
| 198 |
+
if elapsed >= 3:
|
| 199 |
+
suggestion = fetch_flow_suggestion_agent(editor_content)
|
| 200 |
+
return gr.update(visible=False), suggestion, {"last_change": 0, "active": False}, gr.update(active=False)
|
| 201 |
+
else:
|
| 202 |
+
progress = int((elapsed / 3) * 100)
|
| 203 |
+
remaining = 3 - elapsed
|
| 204 |
+
progress_html = f"<progress value='{progress}' max='100'></progress> 补全中... {remaining:.1f}s"
|
| 205 |
+
return gr.update(value=progress_html), gr.update(), debounce_state, gr.update()
|
| 206 |
+
|
| 207 |
+
editor.change(fn=start_debounce, inputs=editor, outputs=[debounce_state, debounce_timer, debounce_progress])
|
| 208 |
+
debounce_timer.tick(fn=update_debounce, inputs=[debounce_state, editor], outputs=[debounce_progress, flow_suggestion_display, debounce_state, debounce_timer])
|
| 209 |
+
refresh_flow_btn.click(fn=fetch_flow_suggestion_agent, inputs=editor, outputs=flow_suggestion_display)
|
| 210 |
+
|
| 211 |
+
# Accept Flow (Triggered by visible Button or hidden Tab Key trigger)
|
| 212 |
accept_flow_fn_inputs = [editor, flow_suggestion_display]
|
| 213 |
accept_flow_fn_outputs = [editor]
|
| 214 |
+
accept_flow_btn.click(fn=accept_flow_suggestion_agent, inputs=accept_flow_fn_inputs, outputs=accept_flow_fn_outputs, show_progress="hidden")
|
|
|
|
|
|
|
| 215 |
|
| 216 |
+
# 4. Agent-based Context Updates
|
| 217 |
+
btn_sync_outline.click(
|
| 218 |
+
fn=update_outline_status_agent,
|
| 219 |
+
inputs=[short_outline_input, editor],
|
| 220 |
outputs=[short_outline_input]
|
| 221 |
)
|
| 222 |
+
btn_suggest_kb.click(
|
| 223 |
+
fn=suggest_new_kb_terms_agent,
|
| 224 |
+
inputs=[kb_input, editor],
|
| 225 |
+
outputs=[suggested_kb_dataframe, md_suggested_terms_header]
|
| 226 |
+
)
|