File size: 11,122 Bytes
f3ff4f1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
from typing import *
import torch
import torch.nn as nn
import torch.nn.functional as F
import numpy as np
from ..modules.utils import convert_module_to_f16, convert_module_to_f32, convert_module_to_bf16
from ..modules.transformer import AbsolutePositionEmbedder, ModulatedTransformerCrossBlock, ModulatedTransformerCrossBlock_woT
from ..modules.spatial import patchify, unpatchify


class TimestepEmbedder(nn.Module):
    """
    Embeds scalar timesteps into vector representations.
    """
    def __init__(self, hidden_size, frequency_embedding_size=256):
        super().__init__()
        self.mlp = nn.Sequential(
            nn.Linear(frequency_embedding_size, hidden_size, bias=True),
            nn.SiLU(),
            nn.Linear(hidden_size, hidden_size, bias=True),
        )
        self.frequency_embedding_size = frequency_embedding_size

    @staticmethod
    def timestep_embedding(t, dim, max_period=10000):
        """
        Create sinusoidal timestep embeddings.

        Args:
            t: a 1-D Tensor of N indices, one per batch element.
                These may be fractional.
            dim: the dimension of the output.
            max_period: controls the minimum frequency of the embeddings.

        Returns:
            an (N, D) Tensor of positional embeddings.
        """
        # https://github.com/openai/glide-text2im/blob/main/glide_text2im/nn.py
        half = dim // 2
        freqs = torch.exp(
            -np.log(max_period) * torch.arange(start=0, end=half, dtype=torch.float32) / half
        ).to(device=t.device)
        args = t[:, None].float() * freqs[None]
        embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1)
        if dim % 2:
            embedding = torch.cat([embedding, torch.zeros_like(embedding[:, :1])], dim=-1)
        return embedding

    def forward(self, t):
        t_freq = self.timestep_embedding(t, self.frequency_embedding_size)
        t_emb = self.mlp(t_freq)
        return t_emb


class SparseStructureFlowModel(nn.Module):
    def __init__(
        self,
        resolution: int,
        in_channels: int,
        model_channels: int,
        cond_channels: int,
        out_channels: int,
        num_blocks: int,
        num_heads: Optional[int] = None,
        num_head_channels: Optional[int] = 64,
        mlp_ratio: float = 4,
        patch_size: int = 2,
        pe_mode: Literal["ape", "rope"] = "ape",
        use_fp16: bool = False,
        use_bf16: bool = False,
        use_checkpoint: bool = False,
        share_mod: bool = False,
        qk_rms_norm: bool = False,
        qk_rms_norm_cross: bool = False,
    ):
        super().__init__()
        self.resolution = resolution
        self.in_channels = in_channels
        self.model_channels = model_channels
        self.cond_channels = cond_channels
        self.out_channels = out_channels
        self.num_blocks = num_blocks
        self.num_heads = num_heads or model_channels // num_head_channels
        self.mlp_ratio = mlp_ratio
        self.patch_size = patch_size
        self.pe_mode = pe_mode
        self.use_fp16 = use_fp16
        self.use_bf16 = use_bf16
        self.use_checkpoint = use_checkpoint
        self.share_mod = share_mod
        self.qk_rms_norm = qk_rms_norm
        self.qk_rms_norm_cross = qk_rms_norm_cross
        if use_fp16:
            self.dtype = torch.float16
        elif use_bf16:
            self.dtype = torch.bfloat16
        else:
            self.dtype = torch.float32

        self.t_embedder = TimestepEmbedder(model_channels)
        if share_mod:
            self.adaLN_modulation = nn.Sequential(
                nn.SiLU(),
                nn.Linear(model_channels, 6 * model_channels, bias=True)
            )

        if pe_mode == "ape":
            self.pos_embedder = AbsolutePositionEmbedder(model_channels, 3)
            coords = torch.meshgrid(*[torch.arange(res, device=self.device) for res in [resolution // patch_size] * 3], indexing='ij')
            coords = torch.stack(coords, dim=-1).reshape(-1, 3)
            pos_emb = self.pos_embedder(coords)
            self.register_buffer("pos_emb", pos_emb)

        self.input_layer = nn.Linear(in_channels * patch_size**3, model_channels)
            
        self.blocks = nn.ModuleList([
            ModulatedTransformerCrossBlock(
                model_channels,
                cond_channels,
                num_heads=self.num_heads,
                mlp_ratio=self.mlp_ratio,
                attn_mode='full',
                use_checkpoint=self.use_checkpoint,
                use_rope=(pe_mode == "rope"),
                share_mod=share_mod,
                qk_rms_norm=self.qk_rms_norm,
                qk_rms_norm_cross=self.qk_rms_norm_cross,
            )
            for _ in range(num_blocks)
        ])

        self.out_layer = nn.Linear(model_channels, out_channels * patch_size**3)

        self.initialize_weights()
        if use_fp16:
            self.convert_to_fp16()
        elif use_bf16:
            self.convert_to_bf16()

    @property
    def device(self) -> torch.device:
        """
        Return the device of the model.
        """
        return next(self.parameters()).device

    def convert_to_fp16(self) -> None:
        """
        Convert the torso of the model to float16.
        """
        self.use_fp16 = True
        self.use_bf16 = False
        self.dtype = torch.float16
        self.blocks.apply(convert_module_to_f16)

    def convert_to_bf16(self) -> None:
        """
        Convert the torso of the model to bfloat16.
        """
        self.use_fp16 = False
        self.use_bf16 = True
        self.dtype = torch.bfloat16
        self.blocks.apply(convert_module_to_bf16)

    def convert_to_fp32(self) -> None:
        """
        Convert the torso of the model to float32.
        """
        self.use_fp16 = False
        self.use_bf16 = False
        self.dtype = torch.float32
        self.blocks.apply(convert_module_to_f32)

    def initialize_weights(self) -> None:
        # Initialize transformer layers:
        def _basic_init(module):
            if isinstance(module, nn.Linear):
                torch.nn.init.xavier_uniform_(module.weight)
                if module.bias is not None:
                    nn.init.constant_(module.bias, 0)
        self.apply(_basic_init)

        # Initialize timestep embedding MLP:
        nn.init.normal_(self.t_embedder.mlp[0].weight, std=0.02)
        nn.init.normal_(self.t_embedder.mlp[2].weight, std=0.02)

        # Zero-out adaLN modulation layers in DiT blocks:
        if self.share_mod:
            nn.init.constant_(self.adaLN_modulation[-1].weight, 0)
            nn.init.constant_(self.adaLN_modulation[-1].bias, 0)
        else:
            for block in self.blocks:
                nn.init.constant_(block.adaLN_modulation[-1].weight, 0)
                nn.init.constant_(block.adaLN_modulation[-1].bias, 0)

        # Zero-out output layers:
        nn.init.constant_(self.out_layer.weight, 0)
        nn.init.constant_(self.out_layer.bias, 0)

    def forward(self, x: torch.Tensor, t: torch.Tensor, cond: torch.Tensor) -> torch.Tensor:
        assert [*x.shape] == [x.shape[0], self.in_channels, *[self.resolution] * 3], \
                f"Input shape mismatch, got {x.shape}, expected {[x.shape[0], self.in_channels, *[self.resolution] * 3]}"

        h = patchify(x, self.patch_size)
        h = h.view(*h.shape[:2], -1).permute(0, 2, 1).contiguous()

        h = self.input_layer(h)
        h = h + self.pos_emb[None]
        t_emb = self.t_embedder(t)
        if self.share_mod:
            t_emb = self.adaLN_modulation(t_emb)
        t_emb = t_emb.type(self.dtype)
        h = h.type(self.dtype)
        if isinstance(cond, list):
            for i in range(len(cond)):
                cond_tmp = cond[i].type(self.dtype)
                for block in self.blocks:
                    h = block(h, t_emb, cond_tmp)
        else:
            cond = cond.type(self.dtype)
            for block in self.blocks:
                h = block(h, t_emb, cond)
        h = h.type(x.dtype)
        h = F.layer_norm(h, h.shape[-1:])
        h = self.out_layer(h)

        h = h.permute(0, 2, 1).view(h.shape[0], h.shape[2], *[self.resolution // self.patch_size] * 3)
        h = unpatchify(h, self.patch_size).contiguous()

        return h

class ModulatedMultiViewCond(nn.Module):
    """
    Transformer cross-attention block (MSA + MCA + FFN) with adaptive layer norm conditioning.
    """
    def __init__(
        self,
        channels: int,
        ctx_channels: int,
        num_heads: int,
        mlp_ratio: float = 4.0,
        attn_mode: Literal["full", "windowed"] = "full",
        window_size: Optional[int] = None,
        shift_window: Optional[Tuple[int, int, int]] = None,
        use_checkpoint: bool = False,
        use_rope: bool = False,
        qk_rms_norm: bool = False,
        qk_rms_norm_cross: bool = False,
        qkv_bias: bool = True,
        share_mod: bool = False,
        num_init_tokens: int = 4096,
        dtype: Optional[torch.dtype] = torch.float32,
        use_fp16: bool = False,
    ):
        super().__init__()
        self.cond_blocks = nn.ModuleList([
            ModulatedTransformerCrossBlock_woT(
                channels,
                ctx_channels,
                num_heads=num_heads,
                mlp_ratio=mlp_ratio,
                attn_mode=attn_mode,
                use_checkpoint=use_checkpoint,
                use_rope=use_rope,
                share_mod=share_mod,
                qk_rms_norm=qk_rms_norm,
                qk_rms_norm_cross=qk_rms_norm_cross,
            )
            for _ in range(4)
        ])
        self.use_fp16 = use_fp16
        if use_fp16:
            self.dtype = torch.float16
        else:
            self.dtype = dtype
        self.multiview_cond_tokens = nn.Parameter(torch.randn(1, num_init_tokens, channels).to(dtype))
        nn.init.normal_(self.multiview_cond_tokens, std=1e-6)
        self.intermediate_layer_idx = [4, 11, 17, 23]
        if use_fp16:
            self.convert_to_fp16()


    def convert_to_fp16(self) -> None:
        """
        Convert the torso of the model to float16.
        """
        self.use_fp16 = True
        self.dtype = torch.float16
        self.cond_blocks.apply(convert_module_to_f16)
        self.multiview_cond_tokens = nn.Parameter(self.multiview_cond_tokens.data.to(self.dtype))
    def forward(self, aggregated_tokens_list: List, image_cond: torch.Tensor):

        b = aggregated_tokens_list[0].shape[0]
        patch_start_idx = 5
        idx = 0
        cond = self.multiview_cond_tokens.repeat(b, 1, 1)
        for layer_idx in self.intermediate_layer_idx:
            x = aggregated_tokens_list[layer_idx][:, :, patch_start_idx:]
            # x = x.reshape(b, -1, 2048) + torch.cat([image_cond.reshape(b, -1, 1024), image_cond.reshape(b, -1, 1024)],dim=-1)
            x = torch.cat([x.reshape(b, -1, 2048), image_cond.reshape(b, -1, 1024)],dim=-1).to(self.dtype)
            cond = self.cond_blocks[idx](cond, x)
            idx = idx + 1
        return cond