File size: 6,872 Bytes
f3ff4f1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
from typing import *
import torch
import torch.nn as nn
import torch.nn.functional as F
import numpy as np
from ...modules.utils import zero_module, convert_module_to_f16, convert_module_to_f32, convert_module_to_bf16
from ...modules import sparse as sp
from .base import SparseTransformerBase
from ...representations import MeshExtractResult
from ...representations.mesh import SparseFeatures2Mesh
    

class SparseSubdivideBlock3d(nn.Module):
    """
    A 3D subdivide block that can subdivide the sparse tensor.

    Args:
        channels: channels in the inputs and outputs.
        out_channels: if specified, the number of output channels.
        num_groups: the number of groups for the group norm.
    """
    def __init__(
        self,
        channels: int,
        resolution: int,
        out_channels: Optional[int] = None,
        num_groups: int = 32
    ):
        super().__init__()
        self.channels = channels
        self.resolution = resolution
        self.out_resolution = resolution * 2
        self.out_channels = out_channels or channels

        self.act_layers = nn.Sequential(
            sp.SparseGroupNorm32(num_groups, channels),
            sp.SparseSiLU()
        )
        
        self.sub = sp.SparseSubdivide()
        
        self.out_layers = nn.Sequential(
            sp.SparseConv3d(channels, self.out_channels, 3, indice_key=f"res_{self.out_resolution}"),
            sp.SparseGroupNorm32(num_groups, self.out_channels),
            sp.SparseSiLU(),
            zero_module(sp.SparseConv3d(self.out_channels, self.out_channels, 3, indice_key=f"res_{self.out_resolution}")),
        )
        
        if self.out_channels == channels:
            self.skip_connection = nn.Identity()
        else:
            self.skip_connection = sp.SparseConv3d(channels, self.out_channels, 1, indice_key=f"res_{self.out_resolution}")
        
    def forward(self, x: sp.SparseTensor) -> sp.SparseTensor:
        """
        Apply the block to a Tensor, conditioned on a timestep embedding.

        Args:
            x: an [N x C x ...] Tensor of features.
        Returns:
            an [N x C x ...] Tensor of outputs.
        """
        h = self.act_layers(x)
        h = self.sub(h)
        x = self.sub(x)
        h = self.out_layers(h)
        h = h + self.skip_connection(x)
        return h


class SLatMeshDecoder(SparseTransformerBase):
    def __init__(
        self,
        resolution: int,
        model_channels: int,
        latent_channels: int,
        num_blocks: int,
        num_heads: Optional[int] = None,
        num_head_channels: Optional[int] = 64,
        mlp_ratio: float = 4,
        attn_mode: Literal["full", "shift_window", "shift_sequence", "shift_order", "swin"] = "swin",
        window_size: int = 8,
        pe_mode: Literal["ape", "rope"] = "ape",
        use_fp16: bool = False,
        use_bf16: bool = False,
        use_checkpoint: bool = False,
        qk_rms_norm: bool = False,
        representation_config: dict = None,
        mesh_extractor: str = "fc",
    ):
        super().__init__(
            in_channels=latent_channels,
            model_channels=model_channels,
            num_blocks=num_blocks,
            num_heads=num_heads,
            num_head_channels=num_head_channels,
            mlp_ratio=mlp_ratio,
            attn_mode=attn_mode,
            window_size=window_size,
            pe_mode=pe_mode,
            use_fp16=use_fp16,
            use_bf16=use_bf16,
            use_checkpoint=use_checkpoint,
            qk_rms_norm=qk_rms_norm,
        )
        self.resolution = resolution
        self.rep_config = representation_config
        if mesh_extractor == "mc":
            try:
                from ...representations.mesh import SparseFeatures2MCMesh
                self.mesh_extractor = SparseFeatures2MCMesh(res=self.resolution*4, use_color=self.rep_config.get('use_color', False))
            except ImportError:
                raise ValueError("SparseFeatures2MCMesh is not available. Please install the 'mc2mesh' extra.")
        elif mesh_extractor == "fc":
            self.mesh_extractor = SparseFeatures2Mesh(res=self.resolution*4, use_color=self.rep_config.get('use_color', False))
        else:
            raise ValueError(f"Invalid mesh extractor {mesh_extractor}")
        self.out_channels = self.mesh_extractor.feats_channels
        self.upsample = nn.ModuleList([
            SparseSubdivideBlock3d(
                channels=model_channels,
                resolution=resolution,
                out_channels=model_channels // 4
            ),
            SparseSubdivideBlock3d(
                channels=model_channels // 4,
                resolution=resolution * 2,
                out_channels=model_channels // 8
            )
        ])
        self.out_layer = sp.SparseLinear(model_channels // 8, self.out_channels)

        self.initialize_weights()
        if use_fp16:
            self.convert_to_fp16()
        elif use_bf16:
            self.convert_to_bf16()

    def initialize_weights(self) -> None:
        super().initialize_weights()
        # Zero-out output layers:
        nn.init.constant_(self.out_layer.weight, 0)
        nn.init.constant_(self.out_layer.bias, 0)

    def convert_to_fp16(self) -> None:
        """
        Convert the torso of the model to float16.
        """
        self.use_fp16 = True
        self.use_bf16 = False
        self.dtype = torch.float16
        super().convert_to_fp16()
        self.upsample.apply(convert_module_to_f16)
    
    def convert_to_bf16(self) -> None:
        """
        Convert the torso of the model to bfloat16.
        """
        self.use_fp16 = False
        self.use_bf16 = True
        self.dtype = torch.bfloat16
        super().convert_to_bf16()
        self.upsample.apply(convert_module_to_bf16)

    def convert_to_fp32(self) -> None:
        """
        Convert the torso of the model to float32.
        """
        self.use_fp16 = False
        self.use_bf16 = False
        self.dtype = torch.float32
        super().convert_to_fp32()
        self.upsample.apply(convert_module_to_f32)  
    
    def to_representation(self, x: sp.SparseTensor) -> List[MeshExtractResult]:
        """
        Convert a batch of network outputs to 3D representations.

        Args:
            x: The [N x * x C] sparse tensor output by the network.

        Returns:
            list of representations
        """
        ret = []
        for i in range(x.shape[0]):
            mesh = self.mesh_extractor(x[i], training=self.training)
            ret.append(mesh)
        return ret

    def forward(self, x: sp.SparseTensor) -> List[MeshExtractResult]:
        h = super().forward(x)
        for block in self.upsample:
            h = block(h)
        h = h.type(x.dtype)
        h = self.out_layer(h)
        return self.to_representation(h)