File size: 12,480 Bytes
f3ff4f1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
import torch
import numpy as np
from tqdm import tqdm
import utils3d
from PIL import Image

from ..renderers import MeshRenderer
from ..representations import Octree, Gaussian, MeshExtractResult
from .random_utils import sphere_hammersley_sequence


def yaw_pitch_r_fov_to_extrinsics_intrinsics(yaws, pitchs, rs, fovs, device='cuda'):
    is_list = isinstance(yaws, list)
    if not is_list:
        yaws = [yaws]
        pitchs = [pitchs]
    if not isinstance(rs, list):
        rs = [rs] * len(yaws)
    if not isinstance(fovs, list):
        fovs = [fovs] * len(yaws)
    extrinsics = []
    intrinsics = []
    for yaw, pitch, r, fov in zip(yaws, pitchs, rs, fovs):
        fov = torch.deg2rad(torch.tensor(float(fov))).to(device)
        yaw = torch.tensor(float(yaw)).to(device)
        pitch = torch.tensor(float(pitch)).to(device)
        orig = torch.tensor([
            torch.sin(yaw) * torch.cos(pitch),
            torch.cos(yaw) * torch.cos(pitch),
            torch.sin(pitch),
        ]).to(device) * r
        extr = utils3d.torch.extrinsics_look_at(orig, torch.tensor([0, 0, 0]).float().to(device), torch.tensor([0, 0, 1]).float().to(device))
        intr = utils3d.torch.intrinsics_from_fov_xy(fov, fov)
        extrinsics.append(extr)
        intrinsics.append(intr)
    if not is_list:
        extrinsics = extrinsics[0]
        intrinsics = intrinsics[0]
    return extrinsics, intrinsics


def render_frames(sample, extrinsics, intrinsics, options={}, colors_overwrite=None, verbose=True, need_depth=False, opt=False, **kwargs):
    if isinstance(sample, MeshExtractResult):
        renderer = MeshRenderer()
        renderer.rendering_options.resolution = options.get('resolution', 1024)
        renderer.rendering_options.near = options.get('near', 1)
        renderer.rendering_options.far = options.get('far', 100)
        renderer.rendering_options.ssaa = options.get('ssaa', 4)
    elif isinstance(sample, Gaussian):
        # from ..renderers import GSplatRenderer, GaussianRenderer
        # renderer = GSplatRenderer()
        from ..renderers import GaussianRenderer
        renderer = GaussianRenderer()
        renderer.rendering_options.resolution = options.get('resolution', 1024)
        renderer.rendering_options.near = options.get('near', 0.8)
        renderer.rendering_options.far = options.get('far', 1.6)
        renderer.rendering_options.bg_color = options.get('bg_color', (0, 0, 0))
        renderer.rendering_options.ssaa = options.get('ssaa', 1)
        renderer.pipe.kernel_size = kwargs.get('kernel_size', 0.1)
        renderer.pipe.use_mip_gaussian = True
    elif isinstance(sample, Octree):
        from ..renderers import OctreeRenderer
        renderer = OctreeRenderer()
        renderer.rendering_options.resolution = options.get('resolution', 512)
        renderer.rendering_options.near = options.get('near', 0.8)
        renderer.rendering_options.far = options.get('far', 1.6)
        renderer.rendering_options.bg_color = options.get('bg_color', (0, 0, 0))
        renderer.rendering_options.ssaa = options.get('ssaa', 4)
        renderer.pipe.primitive = sample.primitive
    else:
        raise ValueError(f'Unsupported sample type: {type(sample)}')
    
    rets = {}
    for j, (extr, intr) in tqdm(enumerate(zip(extrinsics, intrinsics)), desc='Rendering', disable=not verbose):
        if not isinstance(sample, MeshExtractResult):
            res = renderer.render(sample, extr, intr, colors_overwrite=colors_overwrite, need_depth=need_depth)
            if 'color' not in rets: rets['color'] = []
            if 'depth' not in rets: rets['depth'] = []
            rets['color'].append(res['color'].clamp(0, 1) if opt else \
                                 np.clip(res['color'].detach().cpu().numpy().transpose(1, 2, 0) * 255, 0, 255).astype(np.uint8))
            if 'percent_depth' in res:
                rets['depth'].append(res['percent_depth'] if opt else res['percent_depth'].detach().cpu().numpy())
            elif 'depth' in res:
                rets['depth'].append(res['depth'] if opt else res['depth'].detach().cpu().numpy())
            else:
                rets['depth'].append(None)
        else:
            return_types = kwargs.get('return_types', ["color", "normal", "nocs", "depth", "mask"])
            res = renderer.render(sample, extr, intr, return_types = return_types)
            if 'normal' not in rets: rets['normal'] = []
            if 'color' not in rets: rets['color'] = []
            if 'nocs' not in rets: rets['nocs'] = []
            if 'depth' not in rets: rets['depth'] = []
            if 'mask' not in rets: rets['mask'] = []
            if 'color' in return_types:
                rets['color'].append(res['color'].clamp(0,1) if opt else \
                                    np.clip(res['color'].detach().cpu().numpy().transpose(1, 2, 0) * 255, 0, 255).astype(np.uint8))
            rets['normal'].append(res['normal'].clamp(0,1) if opt else \
                                  np.clip(res['normal'].detach().cpu().numpy().transpose(1, 2, 0) * 255, 0, 255).astype(np.uint8))
            rets['nocs'].append(res['nocs'].clamp(0,1) if opt else \
                                np.clip(res['nocs'].detach().cpu().numpy().transpose(1, 2, 0) * 255, 0, 255).astype(np.uint8))
            rets['depth'].append(res['depth'] if opt else \
                                 res['depth'].detach().cpu().numpy())
            rets['mask'].append(res['mask'].detach().cpu().numpy().astype(np.uint8))
    return rets

def render_orth_frames(sample, extrinsics, projections, options={}, colors_overwrite=None, verbose=True, **kwargs):
    # Select renderer according to sample type
    if isinstance(sample, MeshExtractResult):
        renderer = MeshRenderer()
        renderer.rendering_options.resolution = options.get('resolution', 1024)
        renderer.rendering_options.ssaa = options.get('ssaa', 4)
    else:
        raise ValueError(f'Unsupported sample type: {type(sample)}')

    rets = {}
    for j, extr in tqdm(enumerate(extrinsics), desc='Rendering Orthographic', disable=not verbose):
        res = renderer.render(sample, extr, None, perspective=projections[j], return_types=["normal", "nocs", "depth"])
        if 'normal' not in rets:
            rets['normal'] = []
        if 'color' not in rets:
            rets['color'] = []
        if 'nocs' not in rets:
            rets['nocs'] = []
        if 'depth' not in rets:
            rets['depth'] = []
        rets['normal'].append(np.clip(
            res['normal'].detach().cpu().numpy().transpose(1, 2, 0) * 255, 0, 255
        ).astype(np.uint8))
        rets['nocs'].append(np.clip(
            res['nocs'].detach().cpu().numpy().transpose(1, 2, 0) * 255, 0, 255
        ).astype(np.uint8))
        rets['depth'].append(res['depth'].detach().cpu().numpy())
    return rets

def get_ortho_projection_matrix(left, right, bottom, top, near, far):
    """
    使用 torch 创建正交投影矩阵, 使用标准的正交投影矩阵公式:
    [ 2/(r-l)      0          0          -(r+l)/(r-l) ]
    [    0      2/(t-b)       0          -(t+b)/(t-b) ]
    [    0         0      -2/(f-n)      -(f+n)/(f-n) ]
    [    0         0          0               1       ]
    """
    projection_matrix = torch.zeros((4, 4), dtype=torch.float32)

    projection_matrix[0, 0] = 2.0 / (right - left)
    projection_matrix[1, 1] = 2.0 / (top - bottom)
    projection_matrix[2, 2] = -2.0 / (far - near)
    projection_matrix[3, 3] = 1.0

    projection_matrix[0, 3] = -(right + left) / (right - left)
    projection_matrix[1, 3] = -(top + bottom) / (top - bottom)
    projection_matrix[2, 3] = (far + near) / (far - near)

    return projection_matrix


def intrinsics_to_projection(
        intrinsics: torch.Tensor,
        near: float,
        far: float,
    ) -> torch.Tensor:
    """
    OpenCV intrinsics to OpenGL perspective matrix

    Args:
        intrinsics (torch.Tensor): [3, 3] OpenCV intrinsics matrix
        near (float): near plane to clip
        far (float): far plane to clip
    Returns:
        (torch.Tensor): [4, 4] OpenGL perspective matrix
    """
    fx, fy = intrinsics[0, 0], intrinsics[1, 1]
    cx, cy = intrinsics[0, 2], intrinsics[1, 2]
    ret = torch.zeros((4, 4), dtype=intrinsics.dtype, device=intrinsics.device)
    ret[0, 0] = 2 * fx
    ret[1, 1] = 2 * fy
    ret[0, 2] = 2 * cx - 1
    ret[1, 2] = - 2 * cy + 1
    ret[2, 2] = far / (far - near)
    ret[2, 3] = near * far / (near - far)
    ret[3, 2] = 1.
    return ret

def render_ortho_video(sample, resolution=512, ssaa=4, bg_color=(0, 0, 0), num_frames=300, r=2, inverse_direction=False, pitch=-1,  **kwargs):
    if inverse_direction:
        yaws = torch.linspace(3.1415, -3.1415, num_frames)
    else:
        yaws = torch.linspace(0, 2 * 3.1415, num_frames)
    if pitch != -1:
        pitch = pitch * torch.ones(num_frames)
    else:
        pitch = 0.25 + 0.5 * torch.sin(torch.linspace(0, 2 * 3.1415, num_frames))
    yaws = yaws.tolist()
    pitchs = pitch.tolist()
    
    ortho_scale = 0.6
    extrinsics, intrinsics = yaw_pitch_r_fov_to_extrinsics_intrinsics(yaws, pitchs, r, 40)
    
    projection = get_ortho_projection_matrix(-ortho_scale, ortho_scale, -ortho_scale, ortho_scale, 1e-6, 100).to(extrinsics[0].device)
    projections = [projection] * num_frames
    render_results = render_orth_frames(sample, extrinsics, projections, {'resolution': resolution, 'bg_color': bg_color, 'ssaa': ssaa}, **kwargs)
    render_results.update({'extrinsics': extrinsics, 'intrinsics': None, 'projections': projections})
    return render_results


def render_multiview(sample, resolution=518, ssaa=4, bg_color=(0, 0, 0), num_frames=30, r = 2, fov = 40, random_offset=False, only_color=False, **kwargs):
    if random_offset:
        yaws = []
        pitchs = []
        offset = (np.random.rand(), np.random.rand())
        for i in range(num_frames):
            y, p = sphere_hammersley_sequence(i, num_frames, offset)
            yaws.append(y)
            pitchs.append(p)
    else:
        cams = [sphere_hammersley_sequence(i, num_frames) for i in range(num_frames)]
        yaws = [cam[0] for cam in cams]
        pitchs = [cam[1] for cam in cams]
    extrinsics, intrinsics = yaw_pitch_r_fov_to_extrinsics_intrinsics(yaws, pitchs, r, fov)
    res = render_frames(sample, extrinsics, intrinsics, {'resolution': resolution, 'bg_color': bg_color, 'ssaa': ssaa}, **kwargs)
    return res['color'] if only_color else res, extrinsics, intrinsics

def render_video(sample, resolution=512, ssaa=4, bg_color=(0, 0, 0), num_frames=300, r=2, fov=40, 
                 inverse_direction=False, pitch=-1, **kwargs):
    if inverse_direction:
        yaws = torch.linspace(3.1415, -3.1415, num_frames)
        # pitch = 0.25 + 0.5 * torch.sin(torch.linspace(2 * 3.1415, 0, num_frames))
    else:
        yaws = torch.linspace(0, 2 * 3.1415, num_frames)
    if pitch != -1:
        pitch = pitch * torch.ones(num_frames)
    else:
        pitch = 0.25 + 0.5 * torch.sin(torch.linspace(0, 2 * 3.1415, num_frames))
    yaws = yaws.tolist()
    pitch = pitch.tolist()
    extrinsics, intrinsics = yaw_pitch_r_fov_to_extrinsics_intrinsics(yaws, pitch, r, fov)
    
    res = render_frames(sample, extrinsics, intrinsics, {'resolution': resolution, 'bg_color': bg_color, 'ssaa': ssaa}, **kwargs)
    res.update({'extrinsics': extrinsics, 'intrinsics': intrinsics})
    return res

def render_condition_images(sample, resolution=512, ssaa=4, bg_color=(0, 0, 0), num_frames=300, r=2, fov=40, **kwargs):
    yaws = []
    pitchs = []
    offset = (np.random.rand(), np.random.rand())
    for i in range(num_frames):
        y, p = sphere_hammersley_sequence(i, num_frames, offset)
        yaws.append(y)
        pitchs.append(p)

    fov_min, fov_max = 10, 70
    radius_min = np.sqrt(3) / 2 / np.sin(fov_max / 360 * np.pi)
    radius_max = np.sqrt(3) / 2 / np.sin(fov_min / 360 * np.pi)
    k_min = 1 / radius_max**2
    k_max = 1 / radius_min**2
    ks = np.random.uniform(k_min, k_max, (1000000,))
    radius = [1 / np.sqrt(k) for k in ks]
    fov = [2 * np.arcsin(np.sqrt(3) / 2 / r) for r in radius]
    fov = [value_in_radians * 180 / np.pi for value_in_radians in fov]

    extrinsics, intrinsics = yaw_pitch_r_fov_to_extrinsics_intrinsics(yaws, pitchs, radius, fov)
    return render_frames(sample, extrinsics, intrinsics, {'resolution': resolution, 'bg_color': bg_color, 'ssaa': ssaa}, **kwargs), extrinsics, intrinsics