Spaces:
Runtime error
Runtime error
File size: 12,480 Bytes
f3ff4f1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 |
import torch
import numpy as np
from tqdm import tqdm
import utils3d
from PIL import Image
from ..renderers import MeshRenderer
from ..representations import Octree, Gaussian, MeshExtractResult
from .random_utils import sphere_hammersley_sequence
def yaw_pitch_r_fov_to_extrinsics_intrinsics(yaws, pitchs, rs, fovs, device='cuda'):
is_list = isinstance(yaws, list)
if not is_list:
yaws = [yaws]
pitchs = [pitchs]
if not isinstance(rs, list):
rs = [rs] * len(yaws)
if not isinstance(fovs, list):
fovs = [fovs] * len(yaws)
extrinsics = []
intrinsics = []
for yaw, pitch, r, fov in zip(yaws, pitchs, rs, fovs):
fov = torch.deg2rad(torch.tensor(float(fov))).to(device)
yaw = torch.tensor(float(yaw)).to(device)
pitch = torch.tensor(float(pitch)).to(device)
orig = torch.tensor([
torch.sin(yaw) * torch.cos(pitch),
torch.cos(yaw) * torch.cos(pitch),
torch.sin(pitch),
]).to(device) * r
extr = utils3d.torch.extrinsics_look_at(orig, torch.tensor([0, 0, 0]).float().to(device), torch.tensor([0, 0, 1]).float().to(device))
intr = utils3d.torch.intrinsics_from_fov_xy(fov, fov)
extrinsics.append(extr)
intrinsics.append(intr)
if not is_list:
extrinsics = extrinsics[0]
intrinsics = intrinsics[0]
return extrinsics, intrinsics
def render_frames(sample, extrinsics, intrinsics, options={}, colors_overwrite=None, verbose=True, need_depth=False, opt=False, **kwargs):
if isinstance(sample, MeshExtractResult):
renderer = MeshRenderer()
renderer.rendering_options.resolution = options.get('resolution', 1024)
renderer.rendering_options.near = options.get('near', 1)
renderer.rendering_options.far = options.get('far', 100)
renderer.rendering_options.ssaa = options.get('ssaa', 4)
elif isinstance(sample, Gaussian):
# from ..renderers import GSplatRenderer, GaussianRenderer
# renderer = GSplatRenderer()
from ..renderers import GaussianRenderer
renderer = GaussianRenderer()
renderer.rendering_options.resolution = options.get('resolution', 1024)
renderer.rendering_options.near = options.get('near', 0.8)
renderer.rendering_options.far = options.get('far', 1.6)
renderer.rendering_options.bg_color = options.get('bg_color', (0, 0, 0))
renderer.rendering_options.ssaa = options.get('ssaa', 1)
renderer.pipe.kernel_size = kwargs.get('kernel_size', 0.1)
renderer.pipe.use_mip_gaussian = True
elif isinstance(sample, Octree):
from ..renderers import OctreeRenderer
renderer = OctreeRenderer()
renderer.rendering_options.resolution = options.get('resolution', 512)
renderer.rendering_options.near = options.get('near', 0.8)
renderer.rendering_options.far = options.get('far', 1.6)
renderer.rendering_options.bg_color = options.get('bg_color', (0, 0, 0))
renderer.rendering_options.ssaa = options.get('ssaa', 4)
renderer.pipe.primitive = sample.primitive
else:
raise ValueError(f'Unsupported sample type: {type(sample)}')
rets = {}
for j, (extr, intr) in tqdm(enumerate(zip(extrinsics, intrinsics)), desc='Rendering', disable=not verbose):
if not isinstance(sample, MeshExtractResult):
res = renderer.render(sample, extr, intr, colors_overwrite=colors_overwrite, need_depth=need_depth)
if 'color' not in rets: rets['color'] = []
if 'depth' not in rets: rets['depth'] = []
rets['color'].append(res['color'].clamp(0, 1) if opt else \
np.clip(res['color'].detach().cpu().numpy().transpose(1, 2, 0) * 255, 0, 255).astype(np.uint8))
if 'percent_depth' in res:
rets['depth'].append(res['percent_depth'] if opt else res['percent_depth'].detach().cpu().numpy())
elif 'depth' in res:
rets['depth'].append(res['depth'] if opt else res['depth'].detach().cpu().numpy())
else:
rets['depth'].append(None)
else:
return_types = kwargs.get('return_types', ["color", "normal", "nocs", "depth", "mask"])
res = renderer.render(sample, extr, intr, return_types = return_types)
if 'normal' not in rets: rets['normal'] = []
if 'color' not in rets: rets['color'] = []
if 'nocs' not in rets: rets['nocs'] = []
if 'depth' not in rets: rets['depth'] = []
if 'mask' not in rets: rets['mask'] = []
if 'color' in return_types:
rets['color'].append(res['color'].clamp(0,1) if opt else \
np.clip(res['color'].detach().cpu().numpy().transpose(1, 2, 0) * 255, 0, 255).astype(np.uint8))
rets['normal'].append(res['normal'].clamp(0,1) if opt else \
np.clip(res['normal'].detach().cpu().numpy().transpose(1, 2, 0) * 255, 0, 255).astype(np.uint8))
rets['nocs'].append(res['nocs'].clamp(0,1) if opt else \
np.clip(res['nocs'].detach().cpu().numpy().transpose(1, 2, 0) * 255, 0, 255).astype(np.uint8))
rets['depth'].append(res['depth'] if opt else \
res['depth'].detach().cpu().numpy())
rets['mask'].append(res['mask'].detach().cpu().numpy().astype(np.uint8))
return rets
def render_orth_frames(sample, extrinsics, projections, options={}, colors_overwrite=None, verbose=True, **kwargs):
# Select renderer according to sample type
if isinstance(sample, MeshExtractResult):
renderer = MeshRenderer()
renderer.rendering_options.resolution = options.get('resolution', 1024)
renderer.rendering_options.ssaa = options.get('ssaa', 4)
else:
raise ValueError(f'Unsupported sample type: {type(sample)}')
rets = {}
for j, extr in tqdm(enumerate(extrinsics), desc='Rendering Orthographic', disable=not verbose):
res = renderer.render(sample, extr, None, perspective=projections[j], return_types=["normal", "nocs", "depth"])
if 'normal' not in rets:
rets['normal'] = []
if 'color' not in rets:
rets['color'] = []
if 'nocs' not in rets:
rets['nocs'] = []
if 'depth' not in rets:
rets['depth'] = []
rets['normal'].append(np.clip(
res['normal'].detach().cpu().numpy().transpose(1, 2, 0) * 255, 0, 255
).astype(np.uint8))
rets['nocs'].append(np.clip(
res['nocs'].detach().cpu().numpy().transpose(1, 2, 0) * 255, 0, 255
).astype(np.uint8))
rets['depth'].append(res['depth'].detach().cpu().numpy())
return rets
def get_ortho_projection_matrix(left, right, bottom, top, near, far):
"""
使用 torch 创建正交投影矩阵, 使用标准的正交投影矩阵公式:
[ 2/(r-l) 0 0 -(r+l)/(r-l) ]
[ 0 2/(t-b) 0 -(t+b)/(t-b) ]
[ 0 0 -2/(f-n) -(f+n)/(f-n) ]
[ 0 0 0 1 ]
"""
projection_matrix = torch.zeros((4, 4), dtype=torch.float32)
projection_matrix[0, 0] = 2.0 / (right - left)
projection_matrix[1, 1] = 2.0 / (top - bottom)
projection_matrix[2, 2] = -2.0 / (far - near)
projection_matrix[3, 3] = 1.0
projection_matrix[0, 3] = -(right + left) / (right - left)
projection_matrix[1, 3] = -(top + bottom) / (top - bottom)
projection_matrix[2, 3] = (far + near) / (far - near)
return projection_matrix
def intrinsics_to_projection(
intrinsics: torch.Tensor,
near: float,
far: float,
) -> torch.Tensor:
"""
OpenCV intrinsics to OpenGL perspective matrix
Args:
intrinsics (torch.Tensor): [3, 3] OpenCV intrinsics matrix
near (float): near plane to clip
far (float): far plane to clip
Returns:
(torch.Tensor): [4, 4] OpenGL perspective matrix
"""
fx, fy = intrinsics[0, 0], intrinsics[1, 1]
cx, cy = intrinsics[0, 2], intrinsics[1, 2]
ret = torch.zeros((4, 4), dtype=intrinsics.dtype, device=intrinsics.device)
ret[0, 0] = 2 * fx
ret[1, 1] = 2 * fy
ret[0, 2] = 2 * cx - 1
ret[1, 2] = - 2 * cy + 1
ret[2, 2] = far / (far - near)
ret[2, 3] = near * far / (near - far)
ret[3, 2] = 1.
return ret
def render_ortho_video(sample, resolution=512, ssaa=4, bg_color=(0, 0, 0), num_frames=300, r=2, inverse_direction=False, pitch=-1, **kwargs):
if inverse_direction:
yaws = torch.linspace(3.1415, -3.1415, num_frames)
else:
yaws = torch.linspace(0, 2 * 3.1415, num_frames)
if pitch != -1:
pitch = pitch * torch.ones(num_frames)
else:
pitch = 0.25 + 0.5 * torch.sin(torch.linspace(0, 2 * 3.1415, num_frames))
yaws = yaws.tolist()
pitchs = pitch.tolist()
ortho_scale = 0.6
extrinsics, intrinsics = yaw_pitch_r_fov_to_extrinsics_intrinsics(yaws, pitchs, r, 40)
projection = get_ortho_projection_matrix(-ortho_scale, ortho_scale, -ortho_scale, ortho_scale, 1e-6, 100).to(extrinsics[0].device)
projections = [projection] * num_frames
render_results = render_orth_frames(sample, extrinsics, projections, {'resolution': resolution, 'bg_color': bg_color, 'ssaa': ssaa}, **kwargs)
render_results.update({'extrinsics': extrinsics, 'intrinsics': None, 'projections': projections})
return render_results
def render_multiview(sample, resolution=518, ssaa=4, bg_color=(0, 0, 0), num_frames=30, r = 2, fov = 40, random_offset=False, only_color=False, **kwargs):
if random_offset:
yaws = []
pitchs = []
offset = (np.random.rand(), np.random.rand())
for i in range(num_frames):
y, p = sphere_hammersley_sequence(i, num_frames, offset)
yaws.append(y)
pitchs.append(p)
else:
cams = [sphere_hammersley_sequence(i, num_frames) for i in range(num_frames)]
yaws = [cam[0] for cam in cams]
pitchs = [cam[1] for cam in cams]
extrinsics, intrinsics = yaw_pitch_r_fov_to_extrinsics_intrinsics(yaws, pitchs, r, fov)
res = render_frames(sample, extrinsics, intrinsics, {'resolution': resolution, 'bg_color': bg_color, 'ssaa': ssaa}, **kwargs)
return res['color'] if only_color else res, extrinsics, intrinsics
def render_video(sample, resolution=512, ssaa=4, bg_color=(0, 0, 0), num_frames=300, r=2, fov=40,
inverse_direction=False, pitch=-1, **kwargs):
if inverse_direction:
yaws = torch.linspace(3.1415, -3.1415, num_frames)
# pitch = 0.25 + 0.5 * torch.sin(torch.linspace(2 * 3.1415, 0, num_frames))
else:
yaws = torch.linspace(0, 2 * 3.1415, num_frames)
if pitch != -1:
pitch = pitch * torch.ones(num_frames)
else:
pitch = 0.25 + 0.5 * torch.sin(torch.linspace(0, 2 * 3.1415, num_frames))
yaws = yaws.tolist()
pitch = pitch.tolist()
extrinsics, intrinsics = yaw_pitch_r_fov_to_extrinsics_intrinsics(yaws, pitch, r, fov)
res = render_frames(sample, extrinsics, intrinsics, {'resolution': resolution, 'bg_color': bg_color, 'ssaa': ssaa}, **kwargs)
res.update({'extrinsics': extrinsics, 'intrinsics': intrinsics})
return res
def render_condition_images(sample, resolution=512, ssaa=4, bg_color=(0, 0, 0), num_frames=300, r=2, fov=40, **kwargs):
yaws = []
pitchs = []
offset = (np.random.rand(), np.random.rand())
for i in range(num_frames):
y, p = sphere_hammersley_sequence(i, num_frames, offset)
yaws.append(y)
pitchs.append(p)
fov_min, fov_max = 10, 70
radius_min = np.sqrt(3) / 2 / np.sin(fov_max / 360 * np.pi)
radius_max = np.sqrt(3) / 2 / np.sin(fov_min / 360 * np.pi)
k_min = 1 / radius_max**2
k_max = 1 / radius_min**2
ks = np.random.uniform(k_min, k_max, (1000000,))
radius = [1 / np.sqrt(k) for k in ks]
fov = [2 * np.arcsin(np.sqrt(3) / 2 / r) for r in radius]
fov = [value_in_radians * 180 / np.pi for value_in_radians in fov]
extrinsics, intrinsics = yaw_pitch_r_fov_to_extrinsics_intrinsics(yaws, pitchs, radius, fov)
return render_frames(sample, extrinsics, intrinsics, {'resolution': resolution, 'bg_color': bg_color, 'ssaa': ssaa}, **kwargs), extrinsics, intrinsics
|