Spaces:
Runtime error
Runtime error
| import importlib | |
| __attributes = { | |
| 'SparseStructureEncoder': 'sparse_structure_vae', | |
| 'SparseStructureDecoder': 'sparse_structure_vae', | |
| 'SparseStructureFlowModel': 'sparse_structure_flow', | |
| 'SLatEncoder': 'structured_latent_vae', | |
| 'SLatGaussianDecoder': 'structured_latent_vae', | |
| 'SLatMeshDecoder': 'structured_latent_vae', | |
| 'SLatFlowModel': 'structured_latent_flow', | |
| 'ModulatedMultiViewCond': 'sparse_structure_flow', | |
| } | |
| __submodules = [] | |
| __all__ = list(__attributes.keys()) + __submodules | |
| def __getattr__(name): | |
| if name not in globals(): | |
| if name in __attributes: | |
| module_name = __attributes[name] | |
| module = importlib.import_module(f".{module_name}", __name__) | |
| globals()[name] = getattr(module, name) | |
| elif name in __submodules: | |
| module = importlib.import_module(f".{name}", __name__) | |
| globals()[name] = module | |
| else: | |
| raise AttributeError(f"module {__name__} has no attribute {name}") | |
| return globals()[name] | |
| def from_pretrained(path: str, **kwargs): | |
| """ | |
| Load a model from a pretrained checkpoint. | |
| Args: | |
| path: The path to the checkpoint. Can be either local path or a Hugging Face model name. | |
| NOTE: config file and model file should take the name f'{path}.json' and f'{path}.safetensors' respectively. | |
| **kwargs: Additional arguments for the model constructor. | |
| """ | |
| import os | |
| import json | |
| from safetensors.torch import load_file | |
| is_local = os.path.exists(f"{path}.json") and os.path.exists(f"{path}.safetensors") | |
| if is_local: | |
| config_file = f"{path}.json" | |
| model_file = f"{path}.safetensors" | |
| else: | |
| from huggingface_hub import hf_hub_download | |
| path_parts = path.split('/') | |
| repo_id = f'{path_parts[0]}/{path_parts[1]}' | |
| model_name = '/'.join(path_parts[2:]) | |
| config_file = hf_hub_download(repo_id, f"{model_name}.json") | |
| model_file = hf_hub_download(repo_id, f"{model_name}.safetensors") | |
| with open(config_file, 'r') as f: | |
| config = json.load(f) | |
| model = __getattr__(config['name'])(**config['args'], **kwargs) | |
| model.load_state_dict(load_file(model_file), strict=False) | |
| return model | |
| def save_finetuned_model(model, output_dir: str): | |
| """ | |
| Save a fine-tuned model's state_dict as safetensors with a timestamp. | |
| Args: | |
| model: The model to be saved. | |
| output_dir: The directory where the model's state_dict will be saved. | |
| The file will be saved as f'{output_dir}/{timestamp}.safetensors'. | |
| """ | |
| from safetensors.torch import save_file | |
| import os | |
| from datetime import datetime | |
| if not os.path.exists(output_dir): | |
| os.makedirs(output_dir) | |
| timestamp = datetime.now().strftime("%Y%m%d_%H%M%S") | |
| save_file(model.state_dict(), f"{output_dir}/{timestamp}.safetensors") | |
| # For Pylance | |
| if __name__ == '__main__': | |
| from .sparse_structure_vae import SparseStructureEncoder, SparseStructureDecoder | |
| from .sparse_structure_flow import SparseStructureFlowModel, ModulatedMultiViewCond | |
| from .structured_latent_vae import SLatEncoder, SLatGaussianDecoder, SLatMeshDecoder | |
| from .structured_latent_flow import SLatFlowModel | |