|
|
import gc |
|
|
import copy |
|
|
import cv2 |
|
|
import os |
|
|
import numpy as np |
|
|
import torch |
|
|
import torchvision |
|
|
from einops import repeat |
|
|
from PIL import Image, ImageFilter |
|
|
from diffusers import ( |
|
|
AutoencoderKL, |
|
|
DDPMScheduler, |
|
|
UniPCMultistepScheduler, |
|
|
LCMScheduler, |
|
|
) |
|
|
from diffusers.schedulers import TCDScheduler |
|
|
from diffusers.image_processor import PipelineImageInput, VaeImageProcessor |
|
|
from diffusers.utils.torch_utils import randn_tensor |
|
|
from transformers import AutoTokenizer, PretrainedConfig |
|
|
|
|
|
from libs.unet_motion_model import MotionAdapter, UNetMotionModel |
|
|
from libs.brushnet_CA import BrushNetModel |
|
|
from libs.unet_2d_condition import UNet2DConditionModel |
|
|
from diffueraser.pipeline_diffueraser import StableDiffusionDiffuEraserPipeline |
|
|
|
|
|
|
|
|
checkpoints = { |
|
|
"2-Step": ["pcm_{}_smallcfg_2step_converted.safetensors", 2, 0.0], |
|
|
"4-Step": ["pcm_{}_smallcfg_4step_converted.safetensors", 4, 0.0], |
|
|
"8-Step": ["pcm_{}_smallcfg_8step_converted.safetensors", 8, 0.0], |
|
|
"16-Step": ["pcm_{}_smallcfg_16step_converted.safetensors", 16, 0.0], |
|
|
"Normal CFG 4-Step": ["pcm_{}_normalcfg_4step_converted.safetensors", 4, 7.5], |
|
|
"Normal CFG 8-Step": ["pcm_{}_normalcfg_8step_converted.safetensors", 8, 7.5], |
|
|
"Normal CFG 16-Step": ["pcm_{}_normalcfg_16step_converted.safetensors", 16, 7.5], |
|
|
"LCM-Like LoRA": [ |
|
|
"pcm_{}_lcmlike_lora_converted.safetensors", |
|
|
4, |
|
|
0.0, |
|
|
], |
|
|
} |
|
|
|
|
|
def import_model_class_from_model_name_or_path(pretrained_model_name_or_path: str, revision: str): |
|
|
text_encoder_config = PretrainedConfig.from_pretrained( |
|
|
pretrained_model_name_or_path, |
|
|
subfolder="text_encoder", |
|
|
revision=revision, |
|
|
) |
|
|
model_class = text_encoder_config.architectures[0] |
|
|
|
|
|
if model_class == "CLIPTextModel": |
|
|
from transformers import CLIPTextModel |
|
|
|
|
|
return CLIPTextModel |
|
|
elif model_class == "RobertaSeriesModelWithTransformation": |
|
|
from diffusers.pipelines.alt_diffusion.modeling_roberta_series import RobertaSeriesModelWithTransformation |
|
|
|
|
|
return RobertaSeriesModelWithTransformation |
|
|
else: |
|
|
raise ValueError(f"{model_class} is not supported.") |
|
|
|
|
|
def resize_frames(frames, size=None): |
|
|
if size is not None: |
|
|
out_size = size |
|
|
process_size = (out_size[0]-out_size[0]%8, out_size[1]-out_size[1]%8) |
|
|
frames = [f.resize(process_size) for f in frames] |
|
|
else: |
|
|
out_size = frames[0].size |
|
|
process_size = (out_size[0]-out_size[0]%8, out_size[1]-out_size[1]%8) |
|
|
if not out_size == process_size: |
|
|
frames = [f.resize(process_size) for f in frames] |
|
|
|
|
|
return frames |
|
|
|
|
|
def read_mask(validation_mask, fps, n_total_frames, img_size, mask_dilation_iter, frames): |
|
|
cap = cv2.VideoCapture(validation_mask) |
|
|
if not cap.isOpened(): |
|
|
print("Error: Could not open mask video.") |
|
|
exit() |
|
|
mask_fps = cap.get(cv2.CAP_PROP_FPS) |
|
|
if mask_fps != fps: |
|
|
cap.release() |
|
|
raise ValueError("The frame rate of all input videos needs to be consistent.") |
|
|
|
|
|
masks = [] |
|
|
masked_images = [] |
|
|
idx = 0 |
|
|
while True: |
|
|
ret, frame = cap.read() |
|
|
if not ret: |
|
|
break |
|
|
if(idx >= n_total_frames): |
|
|
break |
|
|
mask = Image.fromarray(frame[...,::-1]).convert('L') |
|
|
if mask.size != img_size: |
|
|
mask = mask.resize(img_size, Image.NEAREST) |
|
|
mask = np.asarray(mask) |
|
|
m = np.array(mask > 0).astype(np.uint8) |
|
|
m = cv2.erode(m, |
|
|
cv2.getStructuringElement(cv2.MORPH_RECT, (3, 3)), |
|
|
iterations=1) |
|
|
m = cv2.dilate(m, |
|
|
cv2.getStructuringElement(cv2.MORPH_RECT, (3, 3)), |
|
|
iterations=mask_dilation_iter) |
|
|
|
|
|
mask = Image.fromarray(m * 255) |
|
|
masks.append(mask) |
|
|
|
|
|
masked_image = np.array(frames[idx])*(1-(np.array(mask)[:,:,np.newaxis].astype(np.float32)/255)) |
|
|
masked_image = Image.fromarray(masked_image.astype(np.uint8)) |
|
|
masked_images.append(masked_image) |
|
|
|
|
|
idx += 1 |
|
|
cap.release() |
|
|
|
|
|
return masks, masked_images |
|
|
|
|
|
def read_priori(priori, fps, n_total_frames, img_size): |
|
|
cap = cv2.VideoCapture(priori) |
|
|
if not cap.isOpened(): |
|
|
print("Error: Could not open video.") |
|
|
exit() |
|
|
priori_fps = cap.get(cv2.CAP_PROP_FPS) |
|
|
if priori_fps != fps: |
|
|
cap.release() |
|
|
raise ValueError("The frame rate of all input videos needs to be consistent.") |
|
|
|
|
|
prioris=[] |
|
|
idx = 0 |
|
|
while True: |
|
|
ret, frame = cap.read() |
|
|
if not ret: |
|
|
break |
|
|
if(idx >= n_total_frames): |
|
|
break |
|
|
img = Image.fromarray(frame[...,::-1]) |
|
|
if img.size != img_size: |
|
|
img = img.resize(img_size) |
|
|
prioris.append(img) |
|
|
idx += 1 |
|
|
cap.release() |
|
|
|
|
|
os.remove(priori) |
|
|
|
|
|
return prioris |
|
|
|
|
|
def read_video(validation_image, video_length, nframes, max_img_size): |
|
|
vframes, aframes, info = torchvision.io.read_video(filename=validation_image, pts_unit='sec', end_pts=video_length) |
|
|
fps = info['video_fps'] |
|
|
n_total_frames = int(video_length * fps) |
|
|
n_clip = int(np.ceil(n_total_frames/nframes)) |
|
|
|
|
|
frames = list(vframes.numpy())[:n_total_frames] |
|
|
frames = [Image.fromarray(f) for f in frames] |
|
|
max_size = max(frames[0].size) |
|
|
if(max_size<256): |
|
|
raise ValueError("The resolution of the uploaded video must be larger than 256x256.") |
|
|
if(max_size>4096): |
|
|
raise ValueError("The resolution of the uploaded video must be smaller than 4096x4096.") |
|
|
if max_size>max_img_size: |
|
|
ratio = max_size/max_img_size |
|
|
ratio_size = (int(frames[0].size[0]/ratio),int(frames[0].size[1]/ratio)) |
|
|
img_size = (ratio_size[0]-ratio_size[0]%8, ratio_size[1]-ratio_size[1]%8) |
|
|
resize_flag=True |
|
|
elif (frames[0].size[0]%8==0) and (frames[0].size[1]%8==0): |
|
|
img_size = frames[0].size |
|
|
resize_flag=False |
|
|
else: |
|
|
ratio_size = frames[0].size |
|
|
img_size = (ratio_size[0]-ratio_size[0]%8, ratio_size[1]-ratio_size[1]%8) |
|
|
resize_flag=True |
|
|
if resize_flag: |
|
|
frames = resize_frames(frames, img_size) |
|
|
img_size = frames[0].size |
|
|
|
|
|
return frames, fps, img_size, n_clip, n_total_frames |
|
|
|
|
|
|
|
|
class DiffuEraser: |
|
|
def __init__( |
|
|
self, device, base_model_path, vae_path, diffueraser_path, revision=None, |
|
|
ckpt="Normal CFG 4-Step", mode="sd15", loaded=None): |
|
|
self.device = device |
|
|
|
|
|
|
|
|
self.vae = AutoencoderKL.from_pretrained(vae_path) |
|
|
self.noise_scheduler = DDPMScheduler.from_pretrained(base_model_path, |
|
|
subfolder="scheduler", |
|
|
prediction_type="v_prediction", |
|
|
timestep_spacing="trailing", |
|
|
rescale_betas_zero_snr=True |
|
|
) |
|
|
self.tokenizer = AutoTokenizer.from_pretrained( |
|
|
base_model_path, |
|
|
subfolder="tokenizer", |
|
|
use_fast=False, |
|
|
) |
|
|
text_encoder_cls = import_model_class_from_model_name_or_path(base_model_path,revision) |
|
|
self.text_encoder = text_encoder_cls.from_pretrained( |
|
|
base_model_path, subfolder="text_encoder" |
|
|
) |
|
|
self.brushnet = BrushNetModel.from_pretrained(diffueraser_path, subfolder="brushnet") |
|
|
self.unet_main = UNetMotionModel.from_pretrained( |
|
|
diffueraser_path, subfolder="unet_main", |
|
|
) |
|
|
|
|
|
|
|
|
self.pipeline = StableDiffusionDiffuEraserPipeline.from_pretrained( |
|
|
base_model_path, |
|
|
vae=self.vae, |
|
|
text_encoder=self.text_encoder, |
|
|
tokenizer=self.tokenizer, |
|
|
unet=self.unet_main, |
|
|
brushnet=self.brushnet |
|
|
).to(self.device, torch.float16) |
|
|
self.pipeline.scheduler = UniPCMultistepScheduler.from_config(self.pipeline.scheduler.config) |
|
|
self.pipeline.set_progress_bar_config(disable=True) |
|
|
|
|
|
self.noise_scheduler = UniPCMultistepScheduler.from_config(self.pipeline.scheduler.config) |
|
|
self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1) |
|
|
self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor, do_convert_rgb=True) |
|
|
|
|
|
|
|
|
self.ckpt = ckpt |
|
|
PCM_ckpts = checkpoints[ckpt][0].format(mode) |
|
|
self.guidance_scale = checkpoints[ckpt][2] |
|
|
if loaded != (ckpt + mode): |
|
|
self.pipeline.load_lora_weights( |
|
|
"weights/PCM_Weights", weight_name=PCM_ckpts, subfolder=mode |
|
|
) |
|
|
loaded = ckpt + mode |
|
|
|
|
|
if ckpt == "LCM-Like LoRA": |
|
|
self.pipeline.scheduler = LCMScheduler() |
|
|
else: |
|
|
self.pipeline.scheduler = TCDScheduler( |
|
|
num_train_timesteps=1000, |
|
|
beta_start=0.00085, |
|
|
beta_end=0.012, |
|
|
beta_schedule="scaled_linear", |
|
|
timestep_spacing="trailing", |
|
|
) |
|
|
self.num_inference_steps = checkpoints[ckpt][1] |
|
|
self.guidance_scale = 0 |
|
|
|
|
|
def forward(self, validation_image, validation_mask, priori, output_path, |
|
|
max_img_size = 1280, video_length=2, mask_dilation_iter=4, |
|
|
nframes=22, seed=None, revision = None, guidance_scale=None, blended=True): |
|
|
validation_prompt = "" |
|
|
guidance_scale_final = self.guidance_scale if guidance_scale==None else guidance_scale |
|
|
|
|
|
if (max_img_size<256 or max_img_size>1920): |
|
|
raise ValueError("The max_img_size must be larger than 256, smaller than 1920.") |
|
|
|
|
|
|
|
|
frames, fps, img_size, n_clip, n_total_frames = read_video(validation_image, video_length, nframes, max_img_size) |
|
|
video_len = len(frames) |
|
|
|
|
|
|
|
|
validation_masks_input, validation_images_input = read_mask(validation_mask, fps, video_len, img_size, mask_dilation_iter, frames) |
|
|
|
|
|
|
|
|
prioris = read_priori(priori, fps, n_total_frames, img_size) |
|
|
|
|
|
|
|
|
n_total_frames = min(min(len(frames), len(validation_masks_input)), len(prioris)) |
|
|
if(n_total_frames<22): |
|
|
raise ValueError("The effective video duration is too short. Please make sure that the number of frames of video, mask, and priori is at least greater than 22 frames.") |
|
|
validation_masks_input = validation_masks_input[:n_total_frames] |
|
|
validation_images_input = validation_images_input[:n_total_frames] |
|
|
frames = frames[:n_total_frames] |
|
|
prioris = prioris[:n_total_frames] |
|
|
|
|
|
prioris = resize_frames(prioris) |
|
|
validation_masks_input = resize_frames(validation_masks_input) |
|
|
validation_images_input = resize_frames(validation_images_input) |
|
|
resized_frames = resize_frames(frames) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
print("DiffuEraser inference...") |
|
|
if seed is None: |
|
|
generator = None |
|
|
else: |
|
|
generator = torch.Generator(device=self.device).manual_seed(seed) |
|
|
|
|
|
|
|
|
real_video_length = len(validation_images_input) |
|
|
tar_width, tar_height = validation_images_input[0].size |
|
|
shape = ( |
|
|
nframes, |
|
|
4, |
|
|
tar_height//8, |
|
|
tar_width//8 |
|
|
) |
|
|
if self.text_encoder is not None: |
|
|
prompt_embeds_dtype = self.text_encoder.dtype |
|
|
elif self.unet_main is not None: |
|
|
prompt_embeds_dtype = self.unet_main.dtype |
|
|
else: |
|
|
prompt_embeds_dtype = torch.float16 |
|
|
noise_pre = randn_tensor(shape, device=torch.device(self.device), dtype=prompt_embeds_dtype, generator=generator) |
|
|
noise = repeat(noise_pre, "t c h w->(repeat t) c h w", repeat=n_clip)[:real_video_length,...] |
|
|
|
|
|
|
|
|
images_preprocessed = [] |
|
|
for image in prioris: |
|
|
image = self.image_processor.preprocess(image, height=tar_height, width=tar_width).to(dtype=torch.float32) |
|
|
image = image.to(device=torch.device(self.device), dtype=torch.float16) |
|
|
images_preprocessed.append(image) |
|
|
pixel_values = torch.cat(images_preprocessed) |
|
|
|
|
|
with torch.no_grad(): |
|
|
pixel_values = pixel_values.to(dtype=torch.float16) |
|
|
latents = [] |
|
|
num=4 |
|
|
for i in range(0, pixel_values.shape[0], num): |
|
|
latents.append(self.vae.encode(pixel_values[i : i + num]).latent_dist.sample()) |
|
|
latents = torch.cat(latents, dim=0) |
|
|
latents = latents * self.vae.config.scaling_factor |
|
|
torch.cuda.empty_cache() |
|
|
timesteps = torch.tensor([0], device=self.device) |
|
|
timesteps = timesteps.long() |
|
|
|
|
|
validation_masks_input_ori = copy.deepcopy(validation_masks_input) |
|
|
resized_frames_ori = copy.deepcopy(resized_frames) |
|
|
|
|
|
if n_total_frames > nframes*2: |
|
|
|
|
|
step = n_total_frames / nframes |
|
|
sample_index = [int(i * step) for i in range(nframes)] |
|
|
sample_index = sample_index[:22] |
|
|
validation_masks_input_pre = [validation_masks_input[i] for i in sample_index] |
|
|
validation_images_input_pre = [validation_images_input[i] for i in sample_index] |
|
|
latents_pre = torch.stack([latents[i] for i in sample_index]) |
|
|
|
|
|
|
|
|
noisy_latents_pre = self.noise_scheduler.add_noise(latents_pre, noise_pre, timesteps) |
|
|
latents_pre = noisy_latents_pre |
|
|
|
|
|
with torch.no_grad(): |
|
|
latents_pre_out = self.pipeline( |
|
|
num_frames=nframes, |
|
|
prompt=validation_prompt, |
|
|
images=validation_images_input_pre, |
|
|
masks=validation_masks_input_pre, |
|
|
num_inference_steps=self.num_inference_steps, |
|
|
generator=generator, |
|
|
guidance_scale=guidance_scale_final, |
|
|
latents=latents_pre, |
|
|
).latents |
|
|
torch.cuda.empty_cache() |
|
|
|
|
|
def decode_latents(latents, weight_dtype): |
|
|
latents = 1 / self.vae.config.scaling_factor * latents |
|
|
video = [] |
|
|
for t in range(latents.shape[0]): |
|
|
video.append(self.vae.decode(latents[t:t+1, ...].to(weight_dtype)).sample) |
|
|
video = torch.concat(video, dim=0) |
|
|
|
|
|
video = video.float() |
|
|
return video |
|
|
with torch.no_grad(): |
|
|
video_tensor_temp = decode_latents(latents_pre_out, weight_dtype=torch.float16) |
|
|
images_pre_out = self.image_processor.postprocess(video_tensor_temp, output_type="pil") |
|
|
torch.cuda.empty_cache() |
|
|
|
|
|
|
|
|
black_image = Image.new('L', validation_masks_input[0].size, color=0) |
|
|
for i,index in enumerate(sample_index): |
|
|
latents[index] = latents_pre_out[i] |
|
|
validation_masks_input[index] = black_image |
|
|
validation_images_input[index] = images_pre_out[i] |
|
|
resized_frames[index] = images_pre_out[i] |
|
|
else: |
|
|
latents_pre_out=None |
|
|
sample_index=None |
|
|
gc.collect() |
|
|
torch.cuda.empty_cache() |
|
|
|
|
|
|
|
|
|
|
|
noisy_latents = self.noise_scheduler.add_noise(latents, noise, timesteps) |
|
|
latents = noisy_latents |
|
|
with torch.no_grad(): |
|
|
images = self.pipeline( |
|
|
num_frames=nframes, |
|
|
prompt=validation_prompt, |
|
|
images=validation_images_input, |
|
|
masks=validation_masks_input, |
|
|
num_inference_steps=self.num_inference_steps, |
|
|
generator=generator, |
|
|
guidance_scale=guidance_scale_final, |
|
|
latents=latents, |
|
|
).frames |
|
|
images = images[:real_video_length] |
|
|
|
|
|
gc.collect() |
|
|
torch.cuda.empty_cache() |
|
|
|
|
|
|
|
|
binary_masks = validation_masks_input_ori |
|
|
mask_blurreds = [] |
|
|
if blended: |
|
|
|
|
|
for i in range(len(binary_masks)): |
|
|
mask_blurred = cv2.GaussianBlur(np.array(binary_masks[i]), (21, 21), 0)/255. |
|
|
binary_mask = 1-(1-np.array(binary_masks[i])/255.) * (1-mask_blurred) |
|
|
mask_blurreds.append(Image.fromarray((binary_mask*255).astype(np.uint8))) |
|
|
binary_masks = mask_blurreds |
|
|
|
|
|
comp_frames = [] |
|
|
for i in range(len(images)): |
|
|
mask = np.expand_dims(np.array(binary_masks[i]),2).repeat(3, axis=2).astype(np.float32)/255. |
|
|
img = (np.array(images[i]).astype(np.uint8) * mask \ |
|
|
+ np.array(resized_frames_ori[i]).astype(np.uint8) * (1 - mask)).astype(np.uint8) |
|
|
comp_frames.append(Image.fromarray(img)) |
|
|
|
|
|
default_fps = fps |
|
|
writer = cv2.VideoWriter(output_path, cv2.VideoWriter_fourcc(*"mp4v"), |
|
|
default_fps, comp_frames[0].size) |
|
|
for f in range(real_video_length): |
|
|
img = np.array(comp_frames[f]).astype(np.uint8) |
|
|
writer.write(cv2.cvtColor(img, cv2.COLOR_BGR2RGB)) |
|
|
writer.release() |
|
|
|
|
|
|
|
|
return output_path |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|