|
|
import inspect |
|
|
from typing import Any, Callable, Dict, List, Optional, Tuple, Union |
|
|
import numpy as np |
|
|
import PIL.Image |
|
|
from einops import rearrange, repeat |
|
|
from dataclasses import dataclass |
|
|
import copy |
|
|
import torch |
|
|
import torch.nn.functional as F |
|
|
from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer, CLIPVisionModelWithProjection |
|
|
|
|
|
from diffusers.image_processor import PipelineImageInput, VaeImageProcessor |
|
|
from diffusers.loaders import FromSingleFileMixin, IPAdapterMixin, LoraLoaderMixin, TextualInversionLoaderMixin |
|
|
from diffusers.models import AutoencoderKL, ImageProjection |
|
|
from diffusers.models.lora import adjust_lora_scale_text_encoder |
|
|
from diffusers.schedulers import KarrasDiffusionSchedulers |
|
|
from diffusers.utils import ( |
|
|
USE_PEFT_BACKEND, |
|
|
deprecate, |
|
|
logging, |
|
|
replace_example_docstring, |
|
|
scale_lora_layers, |
|
|
unscale_lora_layers, |
|
|
BaseOutput |
|
|
) |
|
|
from diffusers.utils.torch_utils import is_compiled_module, is_torch_version, randn_tensor |
|
|
from diffusers.pipelines.pipeline_utils import DiffusionPipeline, StableDiffusionMixin |
|
|
from diffusers.pipelines.stable_diffusion.pipeline_output import StableDiffusionPipelineOutput |
|
|
from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker |
|
|
from diffusers import ( |
|
|
AutoencoderKL, |
|
|
DDPMScheduler, |
|
|
UniPCMultistepScheduler, |
|
|
) |
|
|
|
|
|
from libs.unet_2d_condition import UNet2DConditionModel |
|
|
from libs.brushnet_CA import BrushNetModel |
|
|
|
|
|
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
|
|
|
|
|
def retrieve_timesteps( |
|
|
scheduler, |
|
|
num_inference_steps: Optional[int] = None, |
|
|
device: Optional[Union[str, torch.device]] = None, |
|
|
timesteps: Optional[List[int]] = None, |
|
|
**kwargs, |
|
|
): |
|
|
""" |
|
|
Calls the scheduler's `set_timesteps` method and retrieves timesteps from the scheduler after the call. Handles |
|
|
custom timesteps. Any kwargs will be supplied to `scheduler.set_timesteps`. |
|
|
|
|
|
Args: |
|
|
scheduler (`SchedulerMixin`): |
|
|
The scheduler to get timesteps from. |
|
|
num_inference_steps (`int`): |
|
|
The number of diffusion steps used when generating samples with a pre-trained model. If used, |
|
|
`timesteps` must be `None`. |
|
|
device (`str` or `torch.device`, *optional*): |
|
|
The device to which the timesteps should be moved to. If `None`, the timesteps are not moved. |
|
|
timesteps (`List[int]`, *optional*): |
|
|
Custom timesteps used to support arbitrary spacing between timesteps. If `None`, then the default |
|
|
timestep spacing strategy of the scheduler is used. If `timesteps` is passed, `num_inference_steps` |
|
|
must be `None`. |
|
|
|
|
|
Returns: |
|
|
`Tuple[torch.Tensor, int]`: A tuple where the first element is the timestep schedule from the scheduler and the |
|
|
second element is the number of inference steps. |
|
|
""" |
|
|
if timesteps is not None: |
|
|
accepts_timesteps = "timesteps" in set(inspect.signature(scheduler.set_timesteps).parameters.keys()) |
|
|
if not accepts_timesteps: |
|
|
raise ValueError( |
|
|
f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom" |
|
|
f" timestep schedules. Please check whether you are using the correct scheduler." |
|
|
) |
|
|
scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs) |
|
|
timesteps = scheduler.timesteps |
|
|
num_inference_steps = len(timesteps) |
|
|
else: |
|
|
scheduler.set_timesteps(num_inference_steps, device=device, **kwargs) |
|
|
timesteps = scheduler.timesteps |
|
|
return timesteps, num_inference_steps |
|
|
|
|
|
def get_frames_context_swap(total_frames=192, overlap=4, num_frames_per_clip=24): |
|
|
if total_frames<num_frames_per_clip: |
|
|
num_frames_per_clip = total_frames |
|
|
context_list = [] |
|
|
context_list_swap = [] |
|
|
for i in range(1, 2): |
|
|
sample_interval = np.array(range(0,total_frames,i)) |
|
|
n = len(sample_interval) |
|
|
if n>num_frames_per_clip: |
|
|
|
|
|
for k in range(0,n-num_frames_per_clip,num_frames_per_clip-overlap): |
|
|
context_list.append(sample_interval[k:k+num_frames_per_clip]) |
|
|
if k+num_frames_per_clip < n and i==1: |
|
|
context_list.append(sample_interval[n-num_frames_per_clip:n]) |
|
|
context_list_swap.append(sample_interval[0:num_frames_per_clip]) |
|
|
for k in range(num_frames_per_clip//2, n-num_frames_per_clip, num_frames_per_clip-overlap): |
|
|
context_list_swap.append(sample_interval[k:k+num_frames_per_clip]) |
|
|
if k+num_frames_per_clip < n and i==1: |
|
|
context_list_swap.append(sample_interval[n-num_frames_per_clip:n]) |
|
|
if n==num_frames_per_clip: |
|
|
context_list.append(sample_interval[n-num_frames_per_clip:n]) |
|
|
context_list_swap.append(sample_interval[n-num_frames_per_clip:n]) |
|
|
return context_list, context_list_swap |
|
|
|
|
|
@dataclass |
|
|
class DiffuEraserPipelineOutput(BaseOutput): |
|
|
frames: Union[torch.Tensor, np.ndarray] |
|
|
latents: Union[torch.Tensor, np.ndarray] |
|
|
|
|
|
class StableDiffusionDiffuEraserPipeline( |
|
|
DiffusionPipeline, |
|
|
StableDiffusionMixin, |
|
|
TextualInversionLoaderMixin, |
|
|
LoraLoaderMixin, |
|
|
IPAdapterMixin, |
|
|
FromSingleFileMixin, |
|
|
): |
|
|
r""" |
|
|
Pipeline for video inpainting using Video Diffusion Model with BrushNet guidance. |
|
|
|
|
|
This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods |
|
|
implemented for all pipelines (downloading, saving, running on a particular device, etc.). |
|
|
|
|
|
The pipeline also inherits the following loading methods: |
|
|
- [`~loaders.TextualInversionLoaderMixin.load_textual_inversion`] for loading textual inversion embeddings |
|
|
- [`~loaders.LoraLoaderMixin.load_lora_weights`] for loading LoRA weights |
|
|
- [`~loaders.LoraLoaderMixin.save_lora_weights`] for saving LoRA weights |
|
|
- [`~loaders.FromSingleFileMixin.from_single_file`] for loading `.ckpt` files |
|
|
- [`~loaders.IPAdapterMixin.load_ip_adapter`] for loading IP Adapters |
|
|
|
|
|
Args: |
|
|
vae ([`AutoencoderKL`]): |
|
|
Variational Auto-Encoder (VAE) model to encode and decode images to and from latent representations. |
|
|
text_encoder ([`~transformers.CLIPTextModel`]): |
|
|
Frozen text-encoder ([clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14)). |
|
|
tokenizer ([`~transformers.CLIPTokenizer`]): |
|
|
A `CLIPTokenizer` to tokenize text. |
|
|
unet ([`UNet2DConditionModel`]): |
|
|
A `UNet2DConditionModel` to denoise the encoded image latents. |
|
|
brushnet ([`BrushNetModel`]`): |
|
|
Provides additional conditioning to the `unet` during the denoising process. |
|
|
scheduler ([`SchedulerMixin`]): |
|
|
A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of |
|
|
[`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`]. |
|
|
safety_checker ([`StableDiffusionSafetyChecker`]): |
|
|
Classification module that estimates whether generated images could be considered offensive or harmful. |
|
|
Please refer to the [model card](https://huggingface.co/runwayml/stable-diffusion-v1-5) for more details |
|
|
about a model's potential harms. |
|
|
feature_extractor ([`~transformers.CLIPImageProcessor`]): |
|
|
A `CLIPImageProcessor` to extract features from generated images; used as inputs to the `safety_checker`. |
|
|
""" |
|
|
|
|
|
model_cpu_offload_seq = "text_encoder->image_encoder->unet->vae" |
|
|
_optional_components = ["safety_checker", "feature_extractor", "image_encoder"] |
|
|
_exclude_from_cpu_offload = ["safety_checker"] |
|
|
_callback_tensor_inputs = ["latents", "prompt_embeds", "negative_prompt_embeds"] |
|
|
|
|
|
def __init__( |
|
|
self, |
|
|
vae: AutoencoderKL, |
|
|
text_encoder: CLIPTextModel, |
|
|
tokenizer: CLIPTokenizer, |
|
|
unet: UNet2DConditionModel, |
|
|
brushnet: BrushNetModel, |
|
|
scheduler: KarrasDiffusionSchedulers, |
|
|
safety_checker: StableDiffusionSafetyChecker, |
|
|
feature_extractor: CLIPImageProcessor, |
|
|
image_encoder: CLIPVisionModelWithProjection = None, |
|
|
requires_safety_checker: bool = True, |
|
|
): |
|
|
super().__init__() |
|
|
|
|
|
if safety_checker is None and requires_safety_checker: |
|
|
logger.warning( |
|
|
f"You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure" |
|
|
" that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered" |
|
|
" results in services or applications open to the public. Both the diffusers team and Hugging Face" |
|
|
" strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling" |
|
|
" it only for use-cases that involve analyzing network behavior or auditing its results. For more" |
|
|
" information, please have a look at https://github.com/huggingface/diffusers/pull/254 ." |
|
|
) |
|
|
|
|
|
if safety_checker is not None and feature_extractor is None: |
|
|
raise ValueError( |
|
|
"Make sure to define a feature extractor when loading {self.__class__} if you want to use the safety" |
|
|
" checker. If you do not want to use the safety checker, you can pass `'safety_checker=None'` instead." |
|
|
) |
|
|
|
|
|
self.register_modules( |
|
|
vae=vae, |
|
|
text_encoder=text_encoder, |
|
|
tokenizer=tokenizer, |
|
|
unet=unet, |
|
|
brushnet=brushnet, |
|
|
scheduler=scheduler, |
|
|
safety_checker=safety_checker, |
|
|
feature_extractor=feature_extractor, |
|
|
image_encoder=image_encoder, |
|
|
) |
|
|
self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1) |
|
|
self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor, do_convert_rgb=True) |
|
|
self.register_to_config(requires_safety_checker=requires_safety_checker) |
|
|
|
|
|
|
|
|
def _encode_prompt( |
|
|
self, |
|
|
prompt, |
|
|
device, |
|
|
num_images_per_prompt, |
|
|
do_classifier_free_guidance, |
|
|
negative_prompt=None, |
|
|
prompt_embeds: Optional[torch.FloatTensor] = None, |
|
|
negative_prompt_embeds: Optional[torch.FloatTensor] = None, |
|
|
lora_scale: Optional[float] = None, |
|
|
**kwargs, |
|
|
): |
|
|
deprecation_message = "`_encode_prompt()` is deprecated and it will be removed in a future version. Use `encode_prompt()` instead. Also, be aware that the output format changed from a concatenated tensor to a tuple." |
|
|
deprecate("_encode_prompt()", "1.0.0", deprecation_message, standard_warn=False) |
|
|
|
|
|
prompt_embeds_tuple = self.encode_prompt( |
|
|
prompt=prompt, |
|
|
device=device, |
|
|
num_images_per_prompt=num_images_per_prompt, |
|
|
do_classifier_free_guidance=do_classifier_free_guidance, |
|
|
negative_prompt=negative_prompt, |
|
|
prompt_embeds=prompt_embeds, |
|
|
negative_prompt_embeds=negative_prompt_embeds, |
|
|
lora_scale=lora_scale, |
|
|
**kwargs, |
|
|
) |
|
|
|
|
|
|
|
|
prompt_embeds = torch.cat([prompt_embeds_tuple[1], prompt_embeds_tuple[0]]) |
|
|
|
|
|
return prompt_embeds |
|
|
|
|
|
|
|
|
def encode_prompt( |
|
|
self, |
|
|
prompt, |
|
|
device, |
|
|
num_images_per_prompt, |
|
|
do_classifier_free_guidance, |
|
|
negative_prompt=None, |
|
|
prompt_embeds: Optional[torch.FloatTensor] = None, |
|
|
negative_prompt_embeds: Optional[torch.FloatTensor] = None, |
|
|
lora_scale: Optional[float] = None, |
|
|
clip_skip: Optional[int] = None, |
|
|
): |
|
|
r""" |
|
|
Encodes the prompt into text encoder hidden states. |
|
|
|
|
|
Args: |
|
|
prompt (`str` or `List[str]`, *optional*): |
|
|
prompt to be encoded |
|
|
device: (`torch.device`): |
|
|
torch device |
|
|
num_images_per_prompt (`int`): |
|
|
number of images that should be generated per prompt |
|
|
do_classifier_free_guidance (`bool`): |
|
|
whether to use classifier free guidance or not |
|
|
negative_prompt (`str` or `List[str]`, *optional*): |
|
|
The prompt or prompts not to guide the image generation. If not defined, one has to pass |
|
|
`negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is |
|
|
less than `1`). |
|
|
prompt_embeds (`torch.FloatTensor`, *optional*): |
|
|
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not |
|
|
provided, text embeddings will be generated from `prompt` input argument. |
|
|
negative_prompt_embeds (`torch.FloatTensor`, *optional*): |
|
|
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt |
|
|
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input |
|
|
argument. |
|
|
lora_scale (`float`, *optional*): |
|
|
A LoRA scale that will be applied to all LoRA layers of the text encoder if LoRA layers are loaded. |
|
|
clip_skip (`int`, *optional*): |
|
|
Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that |
|
|
the output of the pre-final layer will be used for computing the prompt embeddings. |
|
|
""" |
|
|
|
|
|
|
|
|
if lora_scale is not None and isinstance(self, LoraLoaderMixin): |
|
|
self._lora_scale = lora_scale |
|
|
|
|
|
|
|
|
if not USE_PEFT_BACKEND: |
|
|
adjust_lora_scale_text_encoder(self.text_encoder, lora_scale) |
|
|
else: |
|
|
scale_lora_layers(self.text_encoder, lora_scale) |
|
|
|
|
|
if prompt is not None and isinstance(prompt, str): |
|
|
batch_size = 1 |
|
|
elif prompt is not None and isinstance(prompt, list): |
|
|
batch_size = len(prompt) |
|
|
else: |
|
|
batch_size = prompt_embeds.shape[0] |
|
|
|
|
|
if prompt_embeds is None: |
|
|
|
|
|
if isinstance(self, TextualInversionLoaderMixin): |
|
|
prompt = self.maybe_convert_prompt(prompt, self.tokenizer) |
|
|
|
|
|
text_inputs = self.tokenizer( |
|
|
prompt, |
|
|
padding="max_length", |
|
|
max_length=self.tokenizer.model_max_length, |
|
|
truncation=True, |
|
|
return_tensors="pt", |
|
|
) |
|
|
text_input_ids = text_inputs.input_ids |
|
|
untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids |
|
|
|
|
|
if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal( |
|
|
text_input_ids, untruncated_ids |
|
|
): |
|
|
removed_text = self.tokenizer.batch_decode( |
|
|
untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1] |
|
|
) |
|
|
logger.warning( |
|
|
"The following part of your input was truncated because CLIP can only handle sequences up to" |
|
|
f" {self.tokenizer.model_max_length} tokens: {removed_text}" |
|
|
) |
|
|
|
|
|
if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask: |
|
|
attention_mask = text_inputs.attention_mask.to(device) |
|
|
else: |
|
|
attention_mask = None |
|
|
|
|
|
if clip_skip is None: |
|
|
prompt_embeds = self.text_encoder(text_input_ids.to(device), attention_mask=attention_mask) |
|
|
prompt_embeds = prompt_embeds[0] |
|
|
else: |
|
|
prompt_embeds = self.text_encoder( |
|
|
text_input_ids.to(device), attention_mask=attention_mask, output_hidden_states=True |
|
|
) |
|
|
|
|
|
|
|
|
|
|
|
prompt_embeds = prompt_embeds[-1][-(clip_skip + 1)] |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
prompt_embeds = self.text_encoder.text_model.final_layer_norm(prompt_embeds) |
|
|
|
|
|
if self.text_encoder is not None: |
|
|
prompt_embeds_dtype = self.text_encoder.dtype |
|
|
elif self.unet is not None: |
|
|
prompt_embeds_dtype = self.unet.dtype |
|
|
else: |
|
|
prompt_embeds_dtype = prompt_embeds.dtype |
|
|
|
|
|
prompt_embeds = prompt_embeds.to(dtype=prompt_embeds_dtype, device=device) |
|
|
|
|
|
bs_embed, seq_len, _ = prompt_embeds.shape |
|
|
|
|
|
prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1) |
|
|
prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1) |
|
|
|
|
|
|
|
|
if do_classifier_free_guidance and negative_prompt_embeds is None: |
|
|
uncond_tokens: List[str] |
|
|
if negative_prompt is None: |
|
|
uncond_tokens = [""] * batch_size |
|
|
elif prompt is not None and type(prompt) is not type(negative_prompt): |
|
|
raise TypeError( |
|
|
f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !=" |
|
|
f" {type(prompt)}." |
|
|
) |
|
|
elif isinstance(negative_prompt, str): |
|
|
uncond_tokens = [negative_prompt] |
|
|
elif batch_size != len(negative_prompt): |
|
|
raise ValueError( |
|
|
f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:" |
|
|
f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches" |
|
|
" the batch size of `prompt`." |
|
|
) |
|
|
else: |
|
|
uncond_tokens = negative_prompt |
|
|
|
|
|
|
|
|
if isinstance(self, TextualInversionLoaderMixin): |
|
|
uncond_tokens = self.maybe_convert_prompt(uncond_tokens, self.tokenizer) |
|
|
|
|
|
max_length = prompt_embeds.shape[1] |
|
|
uncond_input = self.tokenizer( |
|
|
uncond_tokens, |
|
|
padding="max_length", |
|
|
max_length=max_length, |
|
|
truncation=True, |
|
|
return_tensors="pt", |
|
|
) |
|
|
|
|
|
if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask: |
|
|
attention_mask = uncond_input.attention_mask.to(device) |
|
|
else: |
|
|
attention_mask = None |
|
|
|
|
|
negative_prompt_embeds = self.text_encoder( |
|
|
uncond_input.input_ids.to(device), |
|
|
attention_mask=attention_mask, |
|
|
) |
|
|
negative_prompt_embeds = negative_prompt_embeds[0] |
|
|
|
|
|
if do_classifier_free_guidance: |
|
|
|
|
|
seq_len = negative_prompt_embeds.shape[1] |
|
|
|
|
|
negative_prompt_embeds = negative_prompt_embeds.to(dtype=prompt_embeds_dtype, device=device) |
|
|
|
|
|
negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1) |
|
|
negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1) |
|
|
|
|
|
if isinstance(self, LoraLoaderMixin) and USE_PEFT_BACKEND: |
|
|
|
|
|
unscale_lora_layers(self.text_encoder, lora_scale) |
|
|
|
|
|
return prompt_embeds, negative_prompt_embeds |
|
|
|
|
|
|
|
|
def encode_image(self, image, device, num_images_per_prompt, output_hidden_states=None): |
|
|
dtype = next(self.image_encoder.parameters()).dtype |
|
|
|
|
|
if not isinstance(image, torch.Tensor): |
|
|
image = self.feature_extractor(image, return_tensors="pt").pixel_values |
|
|
|
|
|
image = image.to(device=device, dtype=dtype) |
|
|
if output_hidden_states: |
|
|
image_enc_hidden_states = self.image_encoder(image, output_hidden_states=True).hidden_states[-2] |
|
|
image_enc_hidden_states = image_enc_hidden_states.repeat_interleave(num_images_per_prompt, dim=0) |
|
|
uncond_image_enc_hidden_states = self.image_encoder( |
|
|
torch.zeros_like(image), output_hidden_states=True |
|
|
).hidden_states[-2] |
|
|
uncond_image_enc_hidden_states = uncond_image_enc_hidden_states.repeat_interleave( |
|
|
num_images_per_prompt, dim=0 |
|
|
) |
|
|
return image_enc_hidden_states, uncond_image_enc_hidden_states |
|
|
else: |
|
|
image_embeds = self.image_encoder(image).image_embeds |
|
|
image_embeds = image_embeds.repeat_interleave(num_images_per_prompt, dim=0) |
|
|
uncond_image_embeds = torch.zeros_like(image_embeds) |
|
|
|
|
|
return image_embeds, uncond_image_embeds |
|
|
|
|
|
def decode_latents(self, latents, weight_dtype): |
|
|
latents = 1 / self.vae.config.scaling_factor * latents |
|
|
video = [] |
|
|
for t in range(latents.shape[0]): |
|
|
video.append(self.vae.decode(latents[t:t+1, ...].to(weight_dtype)).sample) |
|
|
video = torch.concat(video, dim=0) |
|
|
|
|
|
|
|
|
video = video.float() |
|
|
return video |
|
|
|
|
|
|
|
|
def prepare_ip_adapter_image_embeds( |
|
|
self, ip_adapter_image, ip_adapter_image_embeds, device, num_images_per_prompt, do_classifier_free_guidance |
|
|
): |
|
|
if ip_adapter_image_embeds is None: |
|
|
if not isinstance(ip_adapter_image, list): |
|
|
ip_adapter_image = [ip_adapter_image] |
|
|
|
|
|
if len(ip_adapter_image) != len(self.unet.encoder_hid_proj.image_projection_layers): |
|
|
raise ValueError( |
|
|
f"`ip_adapter_image` must have same length as the number of IP Adapters. Got {len(ip_adapter_image)} images and {len(self.unet.encoder_hid_proj.image_projection_layers)} IP Adapters." |
|
|
) |
|
|
|
|
|
image_embeds = [] |
|
|
for single_ip_adapter_image, image_proj_layer in zip( |
|
|
ip_adapter_image, self.unet.encoder_hid_proj.image_projection_layers |
|
|
): |
|
|
output_hidden_state = not isinstance(image_proj_layer, ImageProjection) |
|
|
single_image_embeds, single_negative_image_embeds = self.encode_image( |
|
|
single_ip_adapter_image, device, 1, output_hidden_state |
|
|
) |
|
|
single_image_embeds = torch.stack([single_image_embeds] * num_images_per_prompt, dim=0) |
|
|
single_negative_image_embeds = torch.stack( |
|
|
[single_negative_image_embeds] * num_images_per_prompt, dim=0 |
|
|
) |
|
|
|
|
|
if do_classifier_free_guidance: |
|
|
single_image_embeds = torch.cat([single_negative_image_embeds, single_image_embeds]) |
|
|
single_image_embeds = single_image_embeds.to(device) |
|
|
|
|
|
image_embeds.append(single_image_embeds) |
|
|
else: |
|
|
repeat_dims = [1] |
|
|
image_embeds = [] |
|
|
for single_image_embeds in ip_adapter_image_embeds: |
|
|
if do_classifier_free_guidance: |
|
|
single_negative_image_embeds, single_image_embeds = single_image_embeds.chunk(2) |
|
|
single_image_embeds = single_image_embeds.repeat( |
|
|
num_images_per_prompt, *(repeat_dims * len(single_image_embeds.shape[1:])) |
|
|
) |
|
|
single_negative_image_embeds = single_negative_image_embeds.repeat( |
|
|
num_images_per_prompt, *(repeat_dims * len(single_negative_image_embeds.shape[1:])) |
|
|
) |
|
|
single_image_embeds = torch.cat([single_negative_image_embeds, single_image_embeds]) |
|
|
else: |
|
|
single_image_embeds = single_image_embeds.repeat( |
|
|
num_images_per_prompt, *(repeat_dims * len(single_image_embeds.shape[1:])) |
|
|
) |
|
|
image_embeds.append(single_image_embeds) |
|
|
|
|
|
return image_embeds |
|
|
|
|
|
|
|
|
def run_safety_checker(self, image, device, dtype): |
|
|
if self.safety_checker is None: |
|
|
has_nsfw_concept = None |
|
|
else: |
|
|
if torch.is_tensor(image): |
|
|
feature_extractor_input = self.image_processor.postprocess(image, output_type="pil") |
|
|
else: |
|
|
feature_extractor_input = self.image_processor.numpy_to_pil(image) |
|
|
safety_checker_input = self.feature_extractor(feature_extractor_input, return_tensors="pt").to(device) |
|
|
image, has_nsfw_concept = self.safety_checker( |
|
|
images=image, clip_input=safety_checker_input.pixel_values.to(dtype) |
|
|
) |
|
|
return image, has_nsfw_concept |
|
|
|
|
|
|
|
|
def decode_latents(self, latents, weight_dtype): |
|
|
latents = 1 / self.vae.config.scaling_factor * latents |
|
|
video = [] |
|
|
for t in range(latents.shape[0]): |
|
|
video.append(self.vae.decode(latents[t:t+1, ...].to(weight_dtype)).sample) |
|
|
video = torch.concat(video, dim=0) |
|
|
|
|
|
|
|
|
video = video.float() |
|
|
return video |
|
|
|
|
|
|
|
|
def prepare_extra_step_kwargs(self, generator, eta): |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys()) |
|
|
extra_step_kwargs = {} |
|
|
if accepts_eta: |
|
|
extra_step_kwargs["eta"] = eta |
|
|
|
|
|
|
|
|
accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys()) |
|
|
if accepts_generator: |
|
|
extra_step_kwargs["generator"] = generator |
|
|
return extra_step_kwargs |
|
|
|
|
|
def check_inputs( |
|
|
self, |
|
|
prompt, |
|
|
images, |
|
|
masks, |
|
|
callback_steps, |
|
|
negative_prompt=None, |
|
|
prompt_embeds=None, |
|
|
negative_prompt_embeds=None, |
|
|
ip_adapter_image=None, |
|
|
ip_adapter_image_embeds=None, |
|
|
brushnet_conditioning_scale=1.0, |
|
|
control_guidance_start=0.0, |
|
|
control_guidance_end=1.0, |
|
|
callback_on_step_end_tensor_inputs=None, |
|
|
): |
|
|
if callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0): |
|
|
raise ValueError( |
|
|
f"`callback_steps` has to be a positive integer but is {callback_steps} of type" |
|
|
f" {type(callback_steps)}." |
|
|
) |
|
|
|
|
|
if callback_on_step_end_tensor_inputs is not None and not all( |
|
|
k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs |
|
|
): |
|
|
raise ValueError( |
|
|
f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}" |
|
|
) |
|
|
|
|
|
if prompt is not None and prompt_embeds is not None: |
|
|
raise ValueError( |
|
|
f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to" |
|
|
" only forward one of the two." |
|
|
) |
|
|
elif prompt is None and prompt_embeds is None: |
|
|
raise ValueError( |
|
|
"Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined." |
|
|
) |
|
|
elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)): |
|
|
raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}") |
|
|
|
|
|
if negative_prompt is not None and negative_prompt_embeds is not None: |
|
|
raise ValueError( |
|
|
f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:" |
|
|
f" {negative_prompt_embeds}. Please make sure to only forward one of the two." |
|
|
) |
|
|
|
|
|
if prompt_embeds is not None and negative_prompt_embeds is not None: |
|
|
if prompt_embeds.shape != negative_prompt_embeds.shape: |
|
|
raise ValueError( |
|
|
"`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but" |
|
|
f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`" |
|
|
f" {negative_prompt_embeds.shape}." |
|
|
) |
|
|
|
|
|
|
|
|
is_compiled = hasattr(F, "scaled_dot_product_attention") and isinstance( |
|
|
self.brushnet, torch._dynamo.eval_frame.OptimizedModule |
|
|
) |
|
|
if ( |
|
|
isinstance(self.brushnet, BrushNetModel) |
|
|
or is_compiled |
|
|
and isinstance(self.brushnet._orig_mod, BrushNetModel) |
|
|
): |
|
|
self.check_image(images, masks, prompt, prompt_embeds) |
|
|
else: |
|
|
assert False |
|
|
|
|
|
|
|
|
if ( |
|
|
isinstance(self.brushnet, BrushNetModel) |
|
|
or is_compiled |
|
|
and isinstance(self.brushnet._orig_mod, BrushNetModel) |
|
|
): |
|
|
if not isinstance(brushnet_conditioning_scale, float): |
|
|
raise TypeError("For single brushnet: `brushnet_conditioning_scale` must be type `float`.") |
|
|
else: |
|
|
assert False |
|
|
|
|
|
if not isinstance(control_guidance_start, (tuple, list)): |
|
|
control_guidance_start = [control_guidance_start] |
|
|
|
|
|
if not isinstance(control_guidance_end, (tuple, list)): |
|
|
control_guidance_end = [control_guidance_end] |
|
|
|
|
|
if len(control_guidance_start) != len(control_guidance_end): |
|
|
raise ValueError( |
|
|
f"`control_guidance_start` has {len(control_guidance_start)} elements, but `control_guidance_end` has {len(control_guidance_end)} elements. Make sure to provide the same number of elements to each list." |
|
|
) |
|
|
|
|
|
for start, end in zip(control_guidance_start, control_guidance_end): |
|
|
if start >= end: |
|
|
raise ValueError( |
|
|
f"control guidance start: {start} cannot be larger or equal to control guidance end: {end}." |
|
|
) |
|
|
if start < 0.0: |
|
|
raise ValueError(f"control guidance start: {start} can't be smaller than 0.") |
|
|
if end > 1.0: |
|
|
raise ValueError(f"control guidance end: {end} can't be larger than 1.0.") |
|
|
|
|
|
if ip_adapter_image is not None and ip_adapter_image_embeds is not None: |
|
|
raise ValueError( |
|
|
"Provide either `ip_adapter_image` or `ip_adapter_image_embeds`. Cannot leave both `ip_adapter_image` and `ip_adapter_image_embeds` defined." |
|
|
) |
|
|
|
|
|
if ip_adapter_image_embeds is not None: |
|
|
if not isinstance(ip_adapter_image_embeds, list): |
|
|
raise ValueError( |
|
|
f"`ip_adapter_image_embeds` has to be of type `list` but is {type(ip_adapter_image_embeds)}" |
|
|
) |
|
|
elif ip_adapter_image_embeds[0].ndim not in [3, 4]: |
|
|
raise ValueError( |
|
|
f"`ip_adapter_image_embeds` has to be a list of 3D or 4D tensors but is {ip_adapter_image_embeds[0].ndim}D" |
|
|
) |
|
|
|
|
|
def check_image(self, images, masks, prompt, prompt_embeds): |
|
|
for image in images: |
|
|
image_is_pil = isinstance(image, PIL.Image.Image) |
|
|
image_is_tensor = isinstance(image, torch.Tensor) |
|
|
image_is_np = isinstance(image, np.ndarray) |
|
|
image_is_pil_list = isinstance(image, list) and isinstance(image[0], PIL.Image.Image) |
|
|
image_is_tensor_list = isinstance(image, list) and isinstance(image[0], torch.Tensor) |
|
|
image_is_np_list = isinstance(image, list) and isinstance(image[0], np.ndarray) |
|
|
|
|
|
if ( |
|
|
not image_is_pil |
|
|
and not image_is_tensor |
|
|
and not image_is_np |
|
|
and not image_is_pil_list |
|
|
and not image_is_tensor_list |
|
|
and not image_is_np_list |
|
|
): |
|
|
raise TypeError( |
|
|
f"image must be passed and be one of PIL image, numpy array, torch tensor, list of PIL images, list of numpy arrays or list of torch tensors, but is {type(image)}" |
|
|
) |
|
|
for mask in masks: |
|
|
mask_is_pil = isinstance(mask, PIL.Image.Image) |
|
|
mask_is_tensor = isinstance(mask, torch.Tensor) |
|
|
mask_is_np = isinstance(mask, np.ndarray) |
|
|
mask_is_pil_list = isinstance(mask, list) and isinstance(mask[0], PIL.Image.Image) |
|
|
mask_is_tensor_list = isinstance(mask, list) and isinstance(mask[0], torch.Tensor) |
|
|
mask_is_np_list = isinstance(mask, list) and isinstance(mask[0], np.ndarray) |
|
|
|
|
|
if ( |
|
|
not mask_is_pil |
|
|
and not mask_is_tensor |
|
|
and not mask_is_np |
|
|
and not mask_is_pil_list |
|
|
and not mask_is_tensor_list |
|
|
and not mask_is_np_list |
|
|
): |
|
|
raise TypeError( |
|
|
f"mask must be passed and be one of PIL image, numpy array, torch tensor, list of PIL images, list of numpy arrays or list of torch tensors, but is {type(mask)}" |
|
|
) |
|
|
|
|
|
if image_is_pil: |
|
|
image_batch_size = 1 |
|
|
else: |
|
|
image_batch_size = len(image) |
|
|
|
|
|
if prompt is not None and isinstance(prompt, str): |
|
|
prompt_batch_size = 1 |
|
|
elif prompt is not None and isinstance(prompt, list): |
|
|
prompt_batch_size = len(prompt) |
|
|
elif prompt_embeds is not None: |
|
|
prompt_batch_size = prompt_embeds.shape[0] |
|
|
|
|
|
if image_batch_size != 1 and image_batch_size != prompt_batch_size: |
|
|
raise ValueError( |
|
|
f"If image batch size is not 1, image batch size must be same as prompt batch size. image batch size: {image_batch_size}, prompt batch size: {prompt_batch_size}" |
|
|
) |
|
|
|
|
|
def prepare_image( |
|
|
self, |
|
|
images, |
|
|
width, |
|
|
height, |
|
|
batch_size, |
|
|
num_images_per_prompt, |
|
|
device, |
|
|
dtype, |
|
|
do_classifier_free_guidance=False, |
|
|
guess_mode=False, |
|
|
): |
|
|
images_new = [] |
|
|
for image in images: |
|
|
image = self.image_processor.preprocess(image, height=height, width=width).to(dtype=torch.float32) |
|
|
image_batch_size = image.shape[0] |
|
|
|
|
|
if image_batch_size == 1: |
|
|
repeat_by = batch_size |
|
|
else: |
|
|
|
|
|
repeat_by = num_images_per_prompt |
|
|
|
|
|
image = image.repeat_interleave(repeat_by, dim=0) |
|
|
|
|
|
image = image.to(device=device, dtype=dtype) |
|
|
|
|
|
|
|
|
|
|
|
images_new.append(image) |
|
|
|
|
|
return images_new |
|
|
|
|
|
|
|
|
def prepare_latents(self, batch_size, num_channels_latents, num_frames, height, width, dtype, device, generator, latents=None): |
|
|
|
|
|
|
|
|
shape = ( |
|
|
batch_size, |
|
|
num_channels_latents, |
|
|
num_frames, |
|
|
height // self.vae_scale_factor, |
|
|
width // self.vae_scale_factor |
|
|
) |
|
|
if isinstance(generator, list) and len(generator) != batch_size: |
|
|
raise ValueError( |
|
|
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch" |
|
|
f" size of {batch_size}. Make sure the batch size matches the length of the generators." |
|
|
) |
|
|
|
|
|
if latents is None: |
|
|
|
|
|
noise = rearrange(randn_tensor(shape, generator=generator, device=device, dtype=dtype), "b c t h w -> (b t) c h w") |
|
|
else: |
|
|
noise = latents.to(device) |
|
|
|
|
|
|
|
|
latents = noise * self.scheduler.init_noise_sigma |
|
|
return latents, noise |
|
|
|
|
|
@staticmethod |
|
|
def temp_blend(a, b, overlap): |
|
|
factor = torch.arange(overlap).to(b.device).view(overlap, 1, 1, 1) / (overlap - 1) |
|
|
a[:overlap, ...] = (1 - factor) * a[:overlap, ...] + factor * b[:overlap, ...] |
|
|
a[overlap:, ...] = b[overlap:, ...] |
|
|
return a |
|
|
|
|
|
|
|
|
def get_guidance_scale_embedding(self, w, embedding_dim=512, dtype=torch.float32): |
|
|
""" |
|
|
See https://github.com/google-research/vdm/blob/dc27b98a554f65cdc654b800da5aa1846545d41b/model_vdm.py#L298 |
|
|
|
|
|
Args: |
|
|
timesteps (`torch.Tensor`): |
|
|
generate embedding vectors at these timesteps |
|
|
embedding_dim (`int`, *optional*, defaults to 512): |
|
|
dimension of the embeddings to generate |
|
|
dtype: |
|
|
data type of the generated embeddings |
|
|
|
|
|
Returns: |
|
|
`torch.FloatTensor`: Embedding vectors with shape `(len(timesteps), embedding_dim)` |
|
|
""" |
|
|
assert len(w.shape) == 1 |
|
|
w = w * 1000.0 |
|
|
|
|
|
half_dim = embedding_dim // 2 |
|
|
emb = torch.log(torch.tensor(10000.0)) / (half_dim - 1) |
|
|
emb = torch.exp(torch.arange(half_dim, dtype=dtype) * -emb) |
|
|
emb = w.to(dtype)[:, None] * emb[None, :] |
|
|
emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=1) |
|
|
if embedding_dim % 2 == 1: |
|
|
emb = torch.nn.functional.pad(emb, (0, 1)) |
|
|
assert emb.shape == (w.shape[0], embedding_dim) |
|
|
return emb |
|
|
|
|
|
@property |
|
|
def guidance_scale(self): |
|
|
return self._guidance_scale |
|
|
|
|
|
@property |
|
|
def clip_skip(self): |
|
|
return self._clip_skip |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@property |
|
|
def do_classifier_free_guidance(self): |
|
|
return self._guidance_scale > 1 and self.unet.config.time_cond_proj_dim is None |
|
|
|
|
|
@property |
|
|
def cross_attention_kwargs(self): |
|
|
return self._cross_attention_kwargs |
|
|
|
|
|
@property |
|
|
def num_timesteps(self): |
|
|
return self._num_timesteps |
|
|
|
|
|
|
|
|
@torch.no_grad() |
|
|
def __call__( |
|
|
self, |
|
|
num_frames: Optional[int] = 24, |
|
|
prompt: Union[str, List[str]] = None, |
|
|
images: PipelineImageInput = None, |
|
|
masks: PipelineImageInput = None, |
|
|
height: Optional[int] = None, |
|
|
width: Optional[int] = None, |
|
|
num_inference_steps: int = 50, |
|
|
timesteps: List[int] = None, |
|
|
guidance_scale: float = 7.5, |
|
|
negative_prompt: Optional[Union[str, List[str]]] = None, |
|
|
num_images_per_prompt: Optional[int] = 1, |
|
|
eta: float = 0.0, |
|
|
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, |
|
|
latents: Optional[torch.FloatTensor] = None, |
|
|
prompt_embeds: Optional[torch.FloatTensor] = None, |
|
|
negative_prompt_embeds: Optional[torch.FloatTensor] = None, |
|
|
ip_adapter_image: Optional[PipelineImageInput] = None, |
|
|
ip_adapter_image_embeds: Optional[List[torch.FloatTensor]] = None, |
|
|
output_type: Optional[str] = "pil", |
|
|
return_dict: bool = True, |
|
|
cross_attention_kwargs: Optional[Dict[str, Any]] = None, |
|
|
brushnet_conditioning_scale: Union[float, List[float]] = 1.0, |
|
|
guess_mode: bool = False, |
|
|
control_guidance_start: Union[float, List[float]] = 0.0, |
|
|
control_guidance_end: Union[float, List[float]] = 1.0, |
|
|
clip_skip: Optional[int] = None, |
|
|
callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None, |
|
|
callback_on_step_end_tensor_inputs: List[str] = ["latents"], |
|
|
**kwargs, |
|
|
): |
|
|
r""" |
|
|
The call function to the pipeline for generation. |
|
|
|
|
|
Args: |
|
|
prompt (`str` or `List[str]`, *optional*): |
|
|
The prompt or prompts to guide image generation. If not defined, you need to pass `prompt_embeds`. |
|
|
image (`torch.FloatTensor`, `PIL.Image.Image`, `np.ndarray`, `List[torch.FloatTensor]`, `List[PIL.Image.Image]`, `List[np.ndarray]`,: |
|
|
`List[List[torch.FloatTensor]]`, `List[List[np.ndarray]]` or `List[List[PIL.Image.Image]]`): |
|
|
The BrushNet branch input condition to provide guidance to the `unet` for generation. |
|
|
mask (`torch.FloatTensor`, `PIL.Image.Image`, `np.ndarray`, `List[torch.FloatTensor]`, `List[PIL.Image.Image]`, `List[np.ndarray]`,: |
|
|
`List[List[torch.FloatTensor]]`, `List[List[np.ndarray]]` or `List[List[PIL.Image.Image]]`): |
|
|
The BrushNet branch input condition to provide guidance to the `unet` for generation. |
|
|
height (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`): |
|
|
The height in pixels of the generated image. |
|
|
width (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`): |
|
|
The width in pixels of the generated image. |
|
|
num_inference_steps (`int`, *optional*, defaults to 50): |
|
|
The number of denoising steps. More denoising steps usually lead to a higher quality image at the |
|
|
expense of slower inference. |
|
|
timesteps (`List[int]`, *optional*): |
|
|
Custom timesteps to use for the denoising process with schedulers which support a `timesteps` argument |
|
|
in their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is |
|
|
passed will be used. Must be in descending order. |
|
|
guidance_scale (`float`, *optional*, defaults to 7.5): |
|
|
A higher guidance scale value encourages the model to generate images closely linked to the text |
|
|
`prompt` at the expense of lower image quality. Guidance scale is enabled when `guidance_scale > 1`. |
|
|
negative_prompt (`str` or `List[str]`, *optional*): |
|
|
The prompt or prompts to guide what to not include in image generation. If not defined, you need to |
|
|
pass `negative_prompt_embeds` instead. Ignored when not using guidance (`guidance_scale < 1`). |
|
|
num_images_per_prompt (`int`, *optional*, defaults to 1): |
|
|
The number of images to generate per prompt. |
|
|
eta (`float`, *optional*, defaults to 0.0): |
|
|
Corresponds to parameter eta (η) from the [DDIM](https://arxiv.org/abs/2010.02502) paper. Only applies |
|
|
to the [`~schedulers.DDIMScheduler`], and is ignored in other schedulers. |
|
|
generator (`torch.Generator` or `List[torch.Generator]`, *optional*): |
|
|
A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make |
|
|
generation deterministic. |
|
|
latents (`torch.FloatTensor`, *optional*): |
|
|
Pre-generated noisy latents sampled from a Gaussian distribution, to be used as inputs for image |
|
|
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents |
|
|
tensor is generated by sampling using the supplied random `generator`. |
|
|
prompt_embeds (`torch.FloatTensor`, *optional*): |
|
|
Pre-generated text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not |
|
|
provided, text embeddings are generated from the `prompt` input argument. |
|
|
negative_prompt_embeds (`torch.FloatTensor`, *optional*): |
|
|
Pre-generated negative text embeddings. Can be used to easily tweak text inputs (prompt weighting). If |
|
|
not provided, `negative_prompt_embeds` are generated from the `negative_prompt` input argument. |
|
|
ip_adapter_image: (`PipelineImageInput`, *optional*): Optional image input to work with IP Adapters. |
|
|
ip_adapter_image_embeds (`List[torch.FloatTensor]`, *optional*): |
|
|
Pre-generated image embeddings for IP-Adapter. It should be a list of length same as number of IP-adapters. |
|
|
Each element should be a tensor of shape `(batch_size, num_images, emb_dim)`. It should contain the negative image embedding |
|
|
if `do_classifier_free_guidance` is set to `True`. |
|
|
If not provided, embeddings are computed from the `ip_adapter_image` input argument. |
|
|
output_type (`str`, *optional*, defaults to `"pil"`): |
|
|
The output format of the generated image. Choose between `PIL.Image` or `np.array`. |
|
|
return_dict (`bool`, *optional*, defaults to `True`): |
|
|
Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a |
|
|
plain tuple. |
|
|
callback (`Callable`, *optional*): |
|
|
A function that calls every `callback_steps` steps during inference. The function is called with the |
|
|
following arguments: `callback(step: int, timestep: int, latents: torch.FloatTensor)`. |
|
|
callback_steps (`int`, *optional*, defaults to 1): |
|
|
The frequency at which the `callback` function is called. If not specified, the callback is called at |
|
|
every step. |
|
|
cross_attention_kwargs (`dict`, *optional*): |
|
|
A kwargs dictionary that if specified is passed along to the [`AttentionProcessor`] as defined in |
|
|
[`self.processor`](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py). |
|
|
brushnet_conditioning_scale (`float` or `List[float]`, *optional*, defaults to 1.0): |
|
|
The outputs of the BrushNet are multiplied by `brushnet_conditioning_scale` before they are added |
|
|
to the residual in the original `unet`. If multiple BrushNets are specified in `init`, you can set |
|
|
the corresponding scale as a list. |
|
|
guess_mode (`bool`, *optional*, defaults to `False`): |
|
|
The BrushNet encoder tries to recognize the content of the input image even if you remove all |
|
|
prompts. A `guidance_scale` value between 3.0 and 5.0 is recommended. |
|
|
control_guidance_start (`float` or `List[float]`, *optional*, defaults to 0.0): |
|
|
The percentage of total steps at which the BrushNet starts applying. |
|
|
control_guidance_end (`float` or `List[float]`, *optional*, defaults to 1.0): |
|
|
The percentage of total steps at which the BrushNet stops applying. |
|
|
clip_skip (`int`, *optional*): |
|
|
Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that |
|
|
the output of the pre-final layer will be used for computing the prompt embeddings. |
|
|
callback_on_step_end (`Callable`, *optional*): |
|
|
A function that calls at the end of each denoising steps during the inference. The function is called |
|
|
with the following arguments: `callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int, |
|
|
callback_kwargs: Dict)`. `callback_kwargs` will include a list of all tensors as specified by |
|
|
`callback_on_step_end_tensor_inputs`. |
|
|
callback_on_step_end_tensor_inputs (`List`, *optional*): |
|
|
The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list |
|
|
will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the |
|
|
`._callback_tensor_inputs` attribute of your pipeine class. |
|
|
|
|
|
Examples: |
|
|
|
|
|
Returns: |
|
|
[`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`: |
|
|
If `return_dict` is `True`, [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] is returned, |
|
|
otherwise a `tuple` is returned where the first element is a list with the generated images and the |
|
|
second element is a list of `bool`s indicating whether the corresponding generated image contains |
|
|
"not-safe-for-work" (nsfw) content. |
|
|
""" |
|
|
|
|
|
callback = kwargs.pop("callback", None) |
|
|
callback_steps = kwargs.pop("callback_steps", None) |
|
|
|
|
|
if callback is not None: |
|
|
deprecate( |
|
|
"callback", |
|
|
"1.0.0", |
|
|
"Passing `callback` as an input argument to `__call__` is deprecated, consider using `callback_on_step_end`", |
|
|
) |
|
|
if callback_steps is not None: |
|
|
deprecate( |
|
|
"callback_steps", |
|
|
"1.0.0", |
|
|
"Passing `callback_steps` as an input argument to `__call__` is deprecated, consider using `callback_on_step_end`", |
|
|
) |
|
|
|
|
|
brushnet = self.brushnet._orig_mod if is_compiled_module(self.brushnet) else self.brushnet |
|
|
|
|
|
|
|
|
if not isinstance(control_guidance_start, list) and isinstance(control_guidance_end, list): |
|
|
control_guidance_start = len(control_guidance_end) * [control_guidance_start] |
|
|
elif not isinstance(control_guidance_end, list) and isinstance(control_guidance_start, list): |
|
|
control_guidance_end = len(control_guidance_start) * [control_guidance_end] |
|
|
elif not isinstance(control_guidance_start, list) and not isinstance(control_guidance_end, list): |
|
|
control_guidance_start, control_guidance_end = ( |
|
|
[control_guidance_start], |
|
|
[control_guidance_end], |
|
|
) |
|
|
|
|
|
|
|
|
self.check_inputs( |
|
|
prompt, |
|
|
images, |
|
|
masks, |
|
|
callback_steps, |
|
|
negative_prompt, |
|
|
prompt_embeds, |
|
|
negative_prompt_embeds, |
|
|
ip_adapter_image, |
|
|
ip_adapter_image_embeds, |
|
|
brushnet_conditioning_scale, |
|
|
control_guidance_start, |
|
|
control_guidance_end, |
|
|
callback_on_step_end_tensor_inputs, |
|
|
) |
|
|
|
|
|
self._guidance_scale = guidance_scale |
|
|
self._clip_skip = clip_skip |
|
|
self._cross_attention_kwargs = cross_attention_kwargs |
|
|
|
|
|
|
|
|
if prompt is not None and isinstance(prompt, str): |
|
|
batch_size = 1 |
|
|
elif prompt is not None and isinstance(prompt, list): |
|
|
batch_size = len(prompt) |
|
|
else: |
|
|
batch_size = prompt_embeds.shape[0] |
|
|
|
|
|
device = self._execution_device |
|
|
|
|
|
global_pool_conditions = ( |
|
|
brushnet.config.global_pool_conditions |
|
|
if isinstance(brushnet, BrushNetModel) |
|
|
else brushnet.nets[0].config.global_pool_conditions |
|
|
) |
|
|
guess_mode = guess_mode or global_pool_conditions |
|
|
video_length = len(images) |
|
|
|
|
|
|
|
|
text_encoder_lora_scale = ( |
|
|
self.cross_attention_kwargs.get("scale", None) if self.cross_attention_kwargs is not None else None |
|
|
) |
|
|
prompt_embeds, negative_prompt_embeds = self.encode_prompt( |
|
|
prompt, |
|
|
device, |
|
|
num_images_per_prompt, |
|
|
self.do_classifier_free_guidance, |
|
|
negative_prompt, |
|
|
prompt_embeds=prompt_embeds, |
|
|
negative_prompt_embeds=negative_prompt_embeds, |
|
|
lora_scale=text_encoder_lora_scale, |
|
|
clip_skip=self.clip_skip, |
|
|
) |
|
|
|
|
|
|
|
|
|
|
|
if self.do_classifier_free_guidance: |
|
|
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds]) |
|
|
|
|
|
if ip_adapter_image is not None or ip_adapter_image_embeds is not None: |
|
|
image_embeds = self.prepare_ip_adapter_image_embeds( |
|
|
ip_adapter_image, |
|
|
ip_adapter_image_embeds, |
|
|
device, |
|
|
batch_size * num_images_per_prompt, |
|
|
self.do_classifier_free_guidance, |
|
|
) |
|
|
|
|
|
|
|
|
if isinstance(brushnet, BrushNetModel): |
|
|
images = self.prepare_image( |
|
|
images=images, |
|
|
width=width, |
|
|
height=height, |
|
|
batch_size=batch_size * num_images_per_prompt, |
|
|
num_images_per_prompt=num_images_per_prompt, |
|
|
device=device, |
|
|
dtype=brushnet.dtype, |
|
|
do_classifier_free_guidance=self.do_classifier_free_guidance, |
|
|
guess_mode=guess_mode, |
|
|
) |
|
|
original_masks = self.prepare_image( |
|
|
images=masks, |
|
|
width=width, |
|
|
height=height, |
|
|
batch_size=batch_size * num_images_per_prompt, |
|
|
num_images_per_prompt=num_images_per_prompt, |
|
|
device=device, |
|
|
dtype=brushnet.dtype, |
|
|
do_classifier_free_guidance=self.do_classifier_free_guidance, |
|
|
guess_mode=guess_mode, |
|
|
) |
|
|
original_masks_new = [] |
|
|
for original_mask in original_masks: |
|
|
original_mask=(original_mask.sum(1)[:,None,:,:] < 0).to(images[0].dtype) |
|
|
original_masks_new.append(original_mask) |
|
|
original_masks = original_masks_new |
|
|
|
|
|
height, width = images[0].shape[-2:] |
|
|
else: |
|
|
assert False |
|
|
|
|
|
|
|
|
timesteps, num_inference_steps = retrieve_timesteps(self.scheduler, num_inference_steps, device, timesteps) |
|
|
self._num_timesteps = len(timesteps) |
|
|
|
|
|
|
|
|
num_channels_latents = self.unet.config.in_channels |
|
|
latents, noise = self.prepare_latents( |
|
|
batch_size * num_images_per_prompt, |
|
|
num_channels_latents, |
|
|
num_frames, |
|
|
height, |
|
|
width, |
|
|
prompt_embeds.dtype, |
|
|
device, |
|
|
generator, |
|
|
latents, |
|
|
) |
|
|
|
|
|
|
|
|
images = torch.cat(images) |
|
|
images = images.to(dtype=images[0].dtype) |
|
|
conditioning_latents = [] |
|
|
num=4 |
|
|
for i in range(0, images.shape[0], num): |
|
|
conditioning_latents.append(self.vae.encode(images[i : i + num]).latent_dist.sample()) |
|
|
conditioning_latents = torch.cat(conditioning_latents, dim=0) |
|
|
|
|
|
conditioning_latents = conditioning_latents * self.vae.config.scaling_factor |
|
|
|
|
|
original_masks = torch.cat(original_masks) |
|
|
masks = torch.nn.functional.interpolate( |
|
|
original_masks, |
|
|
size=( |
|
|
latents.shape[-2], |
|
|
latents.shape[-1] |
|
|
) |
|
|
) |
|
|
|
|
|
conditioning_latents=torch.concat([conditioning_latents,masks],1) |
|
|
|
|
|
|
|
|
timestep_cond = None |
|
|
if self.unet.config.time_cond_proj_dim is not None: |
|
|
guidance_scale_tensor = torch.tensor(self.guidance_scale - 1).repeat(batch_size * num_images_per_prompt) |
|
|
timestep_cond = self.get_guidance_scale_embedding( |
|
|
guidance_scale_tensor, embedding_dim=self.unet.config.time_cond_proj_dim |
|
|
).to(device=device, dtype=latents.dtype) |
|
|
|
|
|
|
|
|
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta) |
|
|
|
|
|
|
|
|
added_cond_kwargs = ( |
|
|
{"image_embeds": image_embeds} |
|
|
if ip_adapter_image is not None or ip_adapter_image_embeds is not None |
|
|
else None |
|
|
) |
|
|
|
|
|
|
|
|
brushnet_keep = [] |
|
|
for i in range(len(timesteps)): |
|
|
keeps = [ |
|
|
1.0 - float(i / len(timesteps) < s or (i + 1) / len(timesteps) > e) |
|
|
for s, e in zip(control_guidance_start, control_guidance_end) |
|
|
] |
|
|
brushnet_keep.append(keeps[0] if isinstance(brushnet, BrushNetModel) else keeps) |
|
|
|
|
|
|
|
|
overlap = num_frames//4 |
|
|
context_list, context_list_swap = get_frames_context_swap(video_length, overlap=overlap, num_frames_per_clip=num_frames) |
|
|
scheduler_status = [copy.deepcopy(self.scheduler.__dict__)] * len(context_list) |
|
|
scheduler_status_swap = [copy.deepcopy(self.scheduler.__dict__)] * len(context_list_swap) |
|
|
count = torch.zeros_like(latents) |
|
|
value = torch.zeros_like(latents) |
|
|
|
|
|
|
|
|
|
|
|
num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order |
|
|
is_unet_compiled = is_compiled_module(self.unet) |
|
|
is_brushnet_compiled = is_compiled_module(self.brushnet) |
|
|
is_torch_higher_equal_2_1 = is_torch_version(">=", "2.1") |
|
|
with self.progress_bar(total=num_inference_steps) as progress_bar: |
|
|
for i, t in enumerate(timesteps): |
|
|
|
|
|
count.zero_() |
|
|
value.zero_() |
|
|
|
|
|
if (i%2==1): |
|
|
context_list_choose = context_list_swap |
|
|
scheduler_status_choose = scheduler_status_swap |
|
|
else: |
|
|
context_list_choose = context_list |
|
|
scheduler_status_choose = scheduler_status |
|
|
|
|
|
|
|
|
for j, context in enumerate(context_list_choose): |
|
|
self.scheduler.__dict__.update(scheduler_status_choose[j]) |
|
|
|
|
|
latents_j = latents[context, :, :, :] |
|
|
|
|
|
|
|
|
|
|
|
if (is_unet_compiled and is_brushnet_compiled) and is_torch_higher_equal_2_1: |
|
|
torch._inductor.cudagraph_mark_step_begin() |
|
|
|
|
|
latent_model_input = torch.cat([latents_j] * 2) if self.do_classifier_free_guidance else latents_j |
|
|
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t) |
|
|
|
|
|
|
|
|
if guess_mode and self.do_classifier_free_guidance: |
|
|
|
|
|
control_model_input = latents_j |
|
|
control_model_input = self.scheduler.scale_model_input(control_model_input, t) |
|
|
brushnet_prompt_embeds = prompt_embeds.chunk(2)[1] |
|
|
brushnet_prompt_embeds = rearrange(repeat(brushnet_prompt_embeds, "b c d -> b t c d", t=num_frames), 'b t c d -> (b t) c d') |
|
|
else: |
|
|
control_model_input = latent_model_input |
|
|
brushnet_prompt_embeds = prompt_embeds |
|
|
if self.do_classifier_free_guidance: |
|
|
neg_brushnet_prompt_embeds, brushnet_prompt_embeds = brushnet_prompt_embeds.chunk(2) |
|
|
brushnet_prompt_embeds = rearrange(repeat(brushnet_prompt_embeds, "b c d -> b t c d", t=num_frames), 'b t c d -> (b t) c d') |
|
|
neg_brushnet_prompt_embeds = rearrange(repeat(neg_brushnet_prompt_embeds, "b c d -> b t c d", t=num_frames), 'b t c d -> (b t) c d') |
|
|
brushnet_prompt_embeds = torch.cat([neg_brushnet_prompt_embeds, brushnet_prompt_embeds]) |
|
|
else: |
|
|
brushnet_prompt_embeds = rearrange(repeat(brushnet_prompt_embeds, "b c d -> b t c d", t=num_frames), 'b t c d -> (b t) c d') |
|
|
|
|
|
if isinstance(brushnet_keep[i], list): |
|
|
cond_scale = [c * s for c, s in zip(brushnet_conditioning_scale, brushnet_keep[i])] |
|
|
else: |
|
|
brushnet_cond_scale = brushnet_conditioning_scale |
|
|
if isinstance(brushnet_cond_scale, list): |
|
|
brushnet_cond_scale = brushnet_cond_scale[0] |
|
|
cond_scale = brushnet_cond_scale * brushnet_keep[i] |
|
|
|
|
|
|
|
|
down_block_res_samples, mid_block_res_sample, up_block_res_samples = self.brushnet( |
|
|
control_model_input, |
|
|
t, |
|
|
encoder_hidden_states=brushnet_prompt_embeds, |
|
|
brushnet_cond=torch.cat([conditioning_latents[context, :, :, :]]*2) if self.do_classifier_free_guidance else conditioning_latents[context, :, :, :], |
|
|
conditioning_scale=cond_scale, |
|
|
guess_mode=guess_mode, |
|
|
return_dict=False, |
|
|
) |
|
|
|
|
|
if guess_mode and self.do_classifier_free_guidance: |
|
|
|
|
|
|
|
|
|
|
|
down_block_res_samples = [torch.cat([torch.zeros_like(d), d]) for d in down_block_res_samples] |
|
|
mid_block_res_sample = torch.cat([torch.zeros_like(mid_block_res_sample), mid_block_res_sample]) |
|
|
up_block_res_samples = [torch.cat([torch.zeros_like(d), d]) for d in up_block_res_samples] |
|
|
|
|
|
|
|
|
noise_pred = self.unet( |
|
|
latent_model_input, |
|
|
t, |
|
|
encoder_hidden_states=prompt_embeds, |
|
|
timestep_cond=timestep_cond, |
|
|
cross_attention_kwargs=self.cross_attention_kwargs, |
|
|
down_block_add_samples=down_block_res_samples, |
|
|
mid_block_add_sample=mid_block_res_sample, |
|
|
up_block_add_samples=up_block_res_samples, |
|
|
added_cond_kwargs=added_cond_kwargs, |
|
|
return_dict=False, |
|
|
num_frames=num_frames, |
|
|
)[0] |
|
|
|
|
|
|
|
|
if self.do_classifier_free_guidance: |
|
|
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) |
|
|
noise_pred = noise_pred_uncond + self.guidance_scale * (noise_pred_text - noise_pred_uncond) |
|
|
|
|
|
|
|
|
latents_j = self.scheduler.step(noise_pred, t, latents_j, **extra_step_kwargs, return_dict=False)[0] |
|
|
|
|
|
count[context, ...] += 1 |
|
|
|
|
|
if j==0: |
|
|
value[context, ...] += latents_j |
|
|
else: |
|
|
overlap_index_list = [index for index, value in enumerate(count[context, 0, 0, 0]) if value > 1] |
|
|
overlap_cur = len(overlap_index_list) |
|
|
ratio_next = torch.linspace(0, 1, overlap_cur+2)[1:-1] |
|
|
ratio_pre = 1-ratio_next |
|
|
for i_overlap in overlap_index_list: |
|
|
value[context[i_overlap], ...] = value[context[i_overlap], ...]*ratio_pre[i_overlap] + latents_j[i_overlap, ...]*ratio_next[i_overlap] |
|
|
value[context[i_overlap:num_frames], ...] = latents_j[i_overlap:num_frames, ...] |
|
|
|
|
|
latents = value.clone() |
|
|
|
|
|
if callback_on_step_end is not None: |
|
|
callback_kwargs = {} |
|
|
for k in callback_on_step_end_tensor_inputs: |
|
|
callback_kwargs[k] = locals()[k] |
|
|
callback_outputs = callback_on_step_end(self, i, t, callback_kwargs) |
|
|
|
|
|
latents = callback_outputs.pop("latents", latents) |
|
|
prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds) |
|
|
negative_prompt_embeds = callback_outputs.pop("negative_prompt_embeds", negative_prompt_embeds) |
|
|
|
|
|
|
|
|
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0): |
|
|
progress_bar.update() |
|
|
if callback is not None and i % callback_steps == 0: |
|
|
step_idx = i // getattr(self.scheduler, "order", 1) |
|
|
callback(step_idx, t, latents) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if hasattr(self, "final_offload_hook") and self.final_offload_hook is not None: |
|
|
self.unet.to("cpu") |
|
|
self.brushnet.to("cpu") |
|
|
torch.cuda.empty_cache() |
|
|
|
|
|
if output_type == "latent": |
|
|
image = latents |
|
|
has_nsfw_concept = None |
|
|
return DiffuEraserPipelineOutput(frames=image, nsfw_content_detected=has_nsfw_concept) |
|
|
|
|
|
video_tensor = self.decode_latents(latents, weight_dtype=prompt_embeds.dtype) |
|
|
|
|
|
if output_type == "pt": |
|
|
video = video_tensor |
|
|
else: |
|
|
video = self.image_processor.postprocess(video_tensor, output_type=output_type) |
|
|
|
|
|
|
|
|
self.maybe_free_model_hooks() |
|
|
|
|
|
if not return_dict: |
|
|
return (video, has_nsfw_concept) |
|
|
|
|
|
return DiffuEraserPipelineOutput(frames=video, latents=latents) |
|
|
|