|
|
import torch |
|
|
import torch.nn as nn |
|
|
import lpips |
|
|
from model.vgg_arch import VGGFeatureExtractor |
|
|
|
|
|
class PerceptualLoss(nn.Module): |
|
|
"""Perceptual loss with commonly used style loss. |
|
|
|
|
|
Args: |
|
|
layer_weights (dict): The weight for each layer of vgg feature. |
|
|
Here is an example: {'conv5_4': 1.}, which means the conv5_4 |
|
|
feature layer (before relu5_4) will be extracted with weight |
|
|
1.0 in calculting losses. |
|
|
vgg_type (str): The type of vgg network used as feature extractor. |
|
|
Default: 'vgg19'. |
|
|
use_input_norm (bool): If True, normalize the input image in vgg. |
|
|
Default: True. |
|
|
range_norm (bool): If True, norm images with range [-1, 1] to [0, 1]. |
|
|
Default: False. |
|
|
perceptual_weight (float): If `perceptual_weight > 0`, the perceptual |
|
|
loss will be calculated and the loss will multiplied by the |
|
|
weight. Default: 1.0. |
|
|
style_weight (float): If `style_weight > 0`, the style loss will be |
|
|
calculated and the loss will multiplied by the weight. |
|
|
Default: 0. |
|
|
criterion (str): Criterion used for perceptual loss. Default: 'l1'. |
|
|
""" |
|
|
|
|
|
def __init__(self, |
|
|
layer_weights, |
|
|
vgg_type='vgg19', |
|
|
use_input_norm=True, |
|
|
range_norm=False, |
|
|
perceptual_weight=1.0, |
|
|
style_weight=0., |
|
|
criterion='l1'): |
|
|
super(PerceptualLoss, self).__init__() |
|
|
self.perceptual_weight = perceptual_weight |
|
|
self.style_weight = style_weight |
|
|
self.layer_weights = layer_weights |
|
|
self.vgg = VGGFeatureExtractor( |
|
|
layer_name_list=list(layer_weights.keys()), |
|
|
vgg_type=vgg_type, |
|
|
use_input_norm=use_input_norm, |
|
|
range_norm=range_norm) |
|
|
|
|
|
self.criterion_type = criterion |
|
|
if self.criterion_type == 'l1': |
|
|
self.criterion = torch.nn.L1Loss() |
|
|
elif self.criterion_type == 'l2': |
|
|
self.criterion = torch.nn.L2loss() |
|
|
elif self.criterion_type == 'mse': |
|
|
self.criterion = torch.nn.MSELoss(reduction='mean') |
|
|
elif self.criterion_type == 'fro': |
|
|
self.criterion = None |
|
|
else: |
|
|
raise NotImplementedError(f'{criterion} criterion has not been supported.') |
|
|
|
|
|
def forward(self, x, gt): |
|
|
"""Forward function. |
|
|
|
|
|
Args: |
|
|
x (Tensor): Input tensor with shape (n, c, h, w). |
|
|
gt (Tensor): Ground-truth tensor with shape (n, c, h, w). |
|
|
|
|
|
Returns: |
|
|
Tensor: Forward results. |
|
|
""" |
|
|
|
|
|
x_features = self.vgg(x) |
|
|
gt_features = self.vgg(gt.detach()) |
|
|
|
|
|
|
|
|
if self.perceptual_weight > 0: |
|
|
percep_loss = 0 |
|
|
for k in x_features.keys(): |
|
|
if self.criterion_type == 'fro': |
|
|
percep_loss += torch.norm(x_features[k] - gt_features[k], p='fro') * self.layer_weights[k] |
|
|
else: |
|
|
percep_loss += self.criterion(x_features[k], gt_features[k]) * self.layer_weights[k] |
|
|
percep_loss *= self.perceptual_weight |
|
|
else: |
|
|
percep_loss = None |
|
|
|
|
|
|
|
|
if self.style_weight > 0: |
|
|
style_loss = 0 |
|
|
for k in x_features.keys(): |
|
|
if self.criterion_type == 'fro': |
|
|
style_loss += torch.norm( |
|
|
self._gram_mat(x_features[k]) - self._gram_mat(gt_features[k]), p='fro') * self.layer_weights[k] |
|
|
else: |
|
|
style_loss += self.criterion(self._gram_mat(x_features[k]), self._gram_mat( |
|
|
gt_features[k])) * self.layer_weights[k] |
|
|
style_loss *= self.style_weight |
|
|
else: |
|
|
style_loss = None |
|
|
|
|
|
return percep_loss, style_loss |
|
|
|
|
|
def _gram_mat(self, x): |
|
|
"""Calculate Gram matrix. |
|
|
|
|
|
Args: |
|
|
x (torch.Tensor): Tensor with shape of (n, c, h, w). |
|
|
|
|
|
Returns: |
|
|
torch.Tensor: Gram matrix. |
|
|
""" |
|
|
n, c, h, w = x.size() |
|
|
features = x.view(n, c, w * h) |
|
|
features_t = features.transpose(1, 2) |
|
|
gram = features.bmm(features_t) / (c * h * w) |
|
|
return gram |
|
|
|
|
|
class LPIPSLoss(nn.Module): |
|
|
def __init__(self, |
|
|
loss_weight=1.0, |
|
|
use_input_norm=True, |
|
|
range_norm=False,): |
|
|
super(LPIPSLoss, self).__init__() |
|
|
self.perceptual = lpips.LPIPS(net="vgg", spatial=False).eval() |
|
|
self.loss_weight = loss_weight |
|
|
self.use_input_norm = use_input_norm |
|
|
self.range_norm = range_norm |
|
|
|
|
|
if self.use_input_norm: |
|
|
|
|
|
self.register_buffer('mean', torch.Tensor([0.485, 0.456, 0.406]).view(1, 3, 1, 1)) |
|
|
|
|
|
self.register_buffer('std', torch.Tensor([0.229, 0.224, 0.225]).view(1, 3, 1, 1)) |
|
|
|
|
|
def forward(self, pred, target): |
|
|
if self.range_norm: |
|
|
pred = (pred + 1) / 2 |
|
|
target = (target + 1) / 2 |
|
|
if self.use_input_norm: |
|
|
pred = (pred - self.mean) / self.std |
|
|
target = (target - self.mean) / self.std |
|
|
lpips_loss = self.perceptual(target.contiguous(), pred.contiguous()) |
|
|
return self.loss_weight * lpips_loss.mean(), None |
|
|
|
|
|
|
|
|
class AdversarialLoss(nn.Module): |
|
|
r""" |
|
|
Adversarial loss |
|
|
https://arxiv.org/abs/1711.10337 |
|
|
""" |
|
|
def __init__(self, |
|
|
type='nsgan', |
|
|
target_real_label=1.0, |
|
|
target_fake_label=0.0): |
|
|
r""" |
|
|
type = nsgan | lsgan | hinge |
|
|
""" |
|
|
super(AdversarialLoss, self).__init__() |
|
|
self.type = type |
|
|
self.register_buffer('real_label', torch.tensor(target_real_label)) |
|
|
self.register_buffer('fake_label', torch.tensor(target_fake_label)) |
|
|
|
|
|
if type == 'nsgan': |
|
|
self.criterion = nn.BCELoss() |
|
|
elif type == 'lsgan': |
|
|
self.criterion = nn.MSELoss() |
|
|
elif type == 'hinge': |
|
|
self.criterion = nn.ReLU() |
|
|
|
|
|
def __call__(self, outputs, is_real, is_disc=None): |
|
|
if self.type == 'hinge': |
|
|
if is_disc: |
|
|
if is_real: |
|
|
outputs = -outputs |
|
|
return self.criterion(1 + outputs).mean() |
|
|
else: |
|
|
return (-outputs).mean() |
|
|
else: |
|
|
labels = (self.real_label |
|
|
if is_real else self.fake_label).expand_as(outputs) |
|
|
loss = self.criterion(outputs, labels) |
|
|
return loss |
|
|
|