|
|
|
|
|
import os |
|
|
import cv2 |
|
|
import numpy as np |
|
|
import scipy.ndimage |
|
|
from PIL import Image |
|
|
from tqdm import tqdm |
|
|
import torch |
|
|
import torchvision |
|
|
import gc |
|
|
|
|
|
try: |
|
|
from model.modules.flow_comp_raft import RAFT_bi |
|
|
from model.recurrent_flow_completion import RecurrentFlowCompleteNet |
|
|
from model.propainter import InpaintGenerator |
|
|
from utils.download_util import load_file_from_url |
|
|
from core.utils import to_tensors |
|
|
from model.misc import get_device |
|
|
except: |
|
|
from propainter.model.modules.flow_comp_raft import RAFT_bi |
|
|
from propainter.model.recurrent_flow_completion import RecurrentFlowCompleteNet |
|
|
from propainter.model.propainter import InpaintGenerator |
|
|
from propainter.utils.download_util import load_file_from_url |
|
|
from propainter.core.utils import to_tensors |
|
|
from propainter.model.misc import get_device |
|
|
|
|
|
import warnings |
|
|
warnings.filterwarnings("ignore") |
|
|
|
|
|
pretrain_model_url = 'https://github.com/sczhou/ProPainter/releases/download/v0.1.0/' |
|
|
MaxSideThresh = 960 |
|
|
|
|
|
|
|
|
|
|
|
def resize_frames(frames, size=None): |
|
|
if size is not None: |
|
|
out_size = size |
|
|
process_size = (out_size[0]-out_size[0]%8, out_size[1]-out_size[1]%8) |
|
|
frames = [f.resize(process_size) for f in frames] |
|
|
else: |
|
|
out_size = frames[0].size |
|
|
process_size = (out_size[0]-out_size[0]%8, out_size[1]-out_size[1]%8) |
|
|
if not out_size == process_size: |
|
|
frames = [f.resize(process_size) for f in frames] |
|
|
|
|
|
return frames, process_size, out_size |
|
|
|
|
|
|
|
|
def read_frame_from_videos(frame_root, video_length): |
|
|
if frame_root.endswith(('mp4', 'mov', 'avi', 'MP4', 'MOV', 'AVI')): |
|
|
video_name = os.path.basename(frame_root)[:-4] |
|
|
vframes, aframes, info = torchvision.io.read_video(filename=frame_root, pts_unit='sec', end_pts=video_length) |
|
|
frames = list(vframes.numpy()) |
|
|
frames = [Image.fromarray(f) for f in frames] |
|
|
fps = info['video_fps'] |
|
|
nframes = len(frames) |
|
|
else: |
|
|
video_name = os.path.basename(frame_root) |
|
|
frames = [] |
|
|
fr_lst = sorted(os.listdir(frame_root)) |
|
|
for fr in fr_lst: |
|
|
frame = cv2.imread(os.path.join(frame_root, fr)) |
|
|
frame = Image.fromarray(cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)) |
|
|
frames.append(frame) |
|
|
fps = None |
|
|
nframes = len(frames) |
|
|
size = frames[0].size |
|
|
|
|
|
return frames, fps, size, video_name, nframes |
|
|
|
|
|
def binary_mask(mask, th=0.1): |
|
|
mask[mask>th] = 1 |
|
|
mask[mask<=th] = 0 |
|
|
return mask |
|
|
|
|
|
|
|
|
def read_mask(mpath, frames_len, size, flow_mask_dilates=8, mask_dilates=5): |
|
|
masks_img = [] |
|
|
masks_dilated = [] |
|
|
flow_masks = [] |
|
|
|
|
|
if mpath.endswith(('jpg', 'jpeg', 'png', 'JPG', 'JPEG', 'PNG')): |
|
|
masks_img = [Image.open(mpath)] |
|
|
elif mpath.endswith(('mp4', 'mov', 'avi', 'MP4', 'MOV', 'AVI')): |
|
|
cap = cv2.VideoCapture(mpath) |
|
|
if not cap.isOpened(): |
|
|
print("Error: Could not open video.") |
|
|
exit() |
|
|
idx = 0 |
|
|
while True: |
|
|
ret, frame = cap.read() |
|
|
if not ret: |
|
|
break |
|
|
if(idx >= frames_len): |
|
|
break |
|
|
masks_img.append(Image.fromarray(frame)) |
|
|
idx += 1 |
|
|
cap.release() |
|
|
else: |
|
|
mnames = sorted(os.listdir(mpath)) |
|
|
for mp in mnames: |
|
|
masks_img.append(Image.open(os.path.join(mpath, mp))) |
|
|
|
|
|
|
|
|
for mask_img in masks_img: |
|
|
if size is not None: |
|
|
mask_img = mask_img.resize(size, Image.NEAREST) |
|
|
mask_img = np.array(mask_img.convert('L')) |
|
|
|
|
|
|
|
|
if flow_mask_dilates > 0: |
|
|
flow_mask_img = scipy.ndimage.binary_dilation(mask_img, iterations=flow_mask_dilates).astype(np.uint8) |
|
|
else: |
|
|
flow_mask_img = binary_mask(mask_img).astype(np.uint8) |
|
|
|
|
|
|
|
|
|
|
|
flow_masks.append(Image.fromarray(flow_mask_img * 255)) |
|
|
|
|
|
if mask_dilates > 0: |
|
|
mask_img = scipy.ndimage.binary_dilation(mask_img, iterations=mask_dilates).astype(np.uint8) |
|
|
else: |
|
|
mask_img = binary_mask(mask_img).astype(np.uint8) |
|
|
masks_dilated.append(Image.fromarray(mask_img * 255)) |
|
|
|
|
|
if len(masks_img) == 1: |
|
|
flow_masks = flow_masks * frames_len |
|
|
masks_dilated = masks_dilated * frames_len |
|
|
|
|
|
return flow_masks, masks_dilated |
|
|
|
|
|
def get_ref_index(mid_neighbor_id, neighbor_ids, length, ref_stride=10, ref_num=-1): |
|
|
ref_index = [] |
|
|
if ref_num == -1: |
|
|
for i in range(0, length, ref_stride): |
|
|
if i not in neighbor_ids: |
|
|
ref_index.append(i) |
|
|
else: |
|
|
start_idx = max(0, mid_neighbor_id - ref_stride * (ref_num // 2)) |
|
|
end_idx = min(length, mid_neighbor_id + ref_stride * (ref_num // 2)) |
|
|
for i in range(start_idx, end_idx, ref_stride): |
|
|
if i not in neighbor_ids: |
|
|
if len(ref_index) > ref_num: |
|
|
break |
|
|
ref_index.append(i) |
|
|
return ref_index |
|
|
|
|
|
|
|
|
class Propainter: |
|
|
def __init__( |
|
|
self, propainter_model_dir, device): |
|
|
self.device = device |
|
|
|
|
|
|
|
|
|
|
|
ckpt_path = load_file_from_url(url=os.path.join(pretrain_model_url, 'raft-things.pth'), |
|
|
model_dir=propainter_model_dir, progress=True, file_name=None) |
|
|
self.fix_raft = RAFT_bi(ckpt_path, device) |
|
|
|
|
|
ckpt_path = load_file_from_url(url=os.path.join(pretrain_model_url, 'recurrent_flow_completion.pth'), |
|
|
model_dir=propainter_model_dir, progress=True, file_name=None) |
|
|
self.fix_flow_complete = RecurrentFlowCompleteNet(ckpt_path) |
|
|
for p in self.fix_flow_complete.parameters(): |
|
|
p.requires_grad = False |
|
|
self.fix_flow_complete.to(device) |
|
|
self.fix_flow_complete.eval() |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
ckpt_path = load_file_from_url(url=os.path.join(pretrain_model_url, 'ProPainter.pth'), |
|
|
model_dir=propainter_model_dir, progress=True, file_name=None) |
|
|
self.model = InpaintGenerator(model_path=ckpt_path).to(device) |
|
|
self.model.eval() |
|
|
def forward(self, video, mask, output_path, resize_ratio=0.6, video_length=2, height=-1, width=-1, |
|
|
mask_dilation=4, ref_stride=10, neighbor_length=10, subvideo_length=80, |
|
|
raft_iter=20, save_fps=24, save_frames=False, fp16=True): |
|
|
|
|
|
|
|
|
use_half = True if fp16 else False |
|
|
if self.device == torch.device('cpu'): |
|
|
use_half = False |
|
|
|
|
|
|
|
|
frames, fps, size, video_name, nframes = read_frame_from_videos(video, video_length) |
|
|
frames = frames[:nframes] |
|
|
if not width == -1 and not height == -1: |
|
|
size = (width, height) |
|
|
|
|
|
longer_edge = max(size[0], size[1]) |
|
|
if(longer_edge > MaxSideThresh): |
|
|
scale = MaxSideThresh / longer_edge |
|
|
resize_ratio = resize_ratio * scale |
|
|
if not resize_ratio == 1.0: |
|
|
size = (int(resize_ratio * size[0]), int(resize_ratio * size[1])) |
|
|
|
|
|
frames, size, out_size = resize_frames(frames, size) |
|
|
fps = save_fps if fps is None else fps |
|
|
|
|
|
|
|
|
frames_len = len(frames) |
|
|
flow_masks, masks_dilated = read_mask(mask, frames_len, size, |
|
|
flow_mask_dilates=mask_dilation, |
|
|
mask_dilates=mask_dilation) |
|
|
flow_masks = flow_masks[:nframes] |
|
|
masks_dilated = masks_dilated[:nframes] |
|
|
w, h = size |
|
|
|
|
|
|
|
|
frames_len = min(len(frames), len(masks_dilated)) |
|
|
frames = frames[:frames_len] |
|
|
flow_masks = flow_masks[:frames_len] |
|
|
masks_dilated = masks_dilated[:frames_len] |
|
|
|
|
|
ori_frames_inp = [np.array(f).astype(np.uint8) for f in frames] |
|
|
frames = to_tensors()(frames).unsqueeze(0) * 2 - 1 |
|
|
flow_masks = to_tensors()(flow_masks).unsqueeze(0) |
|
|
masks_dilated = to_tensors()(masks_dilated).unsqueeze(0) |
|
|
frames, flow_masks, masks_dilated = frames.to(self.device), flow_masks.to(self.device), masks_dilated.to(self.device) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
video_length = frames.size(1) |
|
|
print(f'Priori generating: [{video_length} frames]...') |
|
|
with torch.no_grad(): |
|
|
|
|
|
new_longer_edge = max(frames.size(-1), frames.size(-2)) |
|
|
if new_longer_edge <= 640: |
|
|
short_clip_len = 12 |
|
|
elif new_longer_edge <= 720: |
|
|
short_clip_len = 8 |
|
|
elif new_longer_edge <= 1280: |
|
|
short_clip_len = 4 |
|
|
else: |
|
|
short_clip_len = 2 |
|
|
|
|
|
|
|
|
if frames.size(1) > short_clip_len: |
|
|
gt_flows_f_list, gt_flows_b_list = [], [] |
|
|
for f in range(0, video_length, short_clip_len): |
|
|
end_f = min(video_length, f + short_clip_len) |
|
|
if f == 0: |
|
|
flows_f, flows_b = self.fix_raft(frames[:,f:end_f], iters=raft_iter) |
|
|
else: |
|
|
flows_f, flows_b = self.fix_raft(frames[:,f-1:end_f], iters=raft_iter) |
|
|
|
|
|
gt_flows_f_list.append(flows_f) |
|
|
gt_flows_b_list.append(flows_b) |
|
|
torch.cuda.empty_cache() |
|
|
|
|
|
gt_flows_f = torch.cat(gt_flows_f_list, dim=1) |
|
|
gt_flows_b = torch.cat(gt_flows_b_list, dim=1) |
|
|
gt_flows_bi = (gt_flows_f, gt_flows_b) |
|
|
else: |
|
|
gt_flows_bi = self.fix_raft(frames, iters=raft_iter) |
|
|
torch.cuda.empty_cache() |
|
|
torch.cuda.empty_cache() |
|
|
gc.collect() |
|
|
|
|
|
if use_half: |
|
|
frames, flow_masks, masks_dilated = frames.half(), flow_masks.half(), masks_dilated.half() |
|
|
gt_flows_bi = (gt_flows_bi[0].half(), gt_flows_bi[1].half()) |
|
|
self.fix_flow_complete = self.fix_flow_complete.half() |
|
|
self.model = self.model.half() |
|
|
|
|
|
|
|
|
flow_length = gt_flows_bi[0].size(1) |
|
|
if flow_length > subvideo_length: |
|
|
pred_flows_f, pred_flows_b = [], [] |
|
|
pad_len = 5 |
|
|
for f in range(0, flow_length, subvideo_length): |
|
|
s_f = max(0, f - pad_len) |
|
|
e_f = min(flow_length, f + subvideo_length + pad_len) |
|
|
pad_len_s = max(0, f) - s_f |
|
|
pad_len_e = e_f - min(flow_length, f + subvideo_length) |
|
|
pred_flows_bi_sub, _ = self.fix_flow_complete.forward_bidirect_flow( |
|
|
(gt_flows_bi[0][:, s_f:e_f], gt_flows_bi[1][:, s_f:e_f]), |
|
|
flow_masks[:, s_f:e_f+1]) |
|
|
pred_flows_bi_sub = self.fix_flow_complete.combine_flow( |
|
|
(gt_flows_bi[0][:, s_f:e_f], gt_flows_bi[1][:, s_f:e_f]), |
|
|
pred_flows_bi_sub, |
|
|
flow_masks[:, s_f:e_f+1]) |
|
|
|
|
|
pred_flows_f.append(pred_flows_bi_sub[0][:, pad_len_s:e_f-s_f-pad_len_e]) |
|
|
pred_flows_b.append(pred_flows_bi_sub[1][:, pad_len_s:e_f-s_f-pad_len_e]) |
|
|
torch.cuda.empty_cache() |
|
|
|
|
|
pred_flows_f = torch.cat(pred_flows_f, dim=1) |
|
|
pred_flows_b = torch.cat(pred_flows_b, dim=1) |
|
|
pred_flows_bi = (pred_flows_f, pred_flows_b) |
|
|
else: |
|
|
pred_flows_bi, _ = self.fix_flow_complete.forward_bidirect_flow(gt_flows_bi, flow_masks) |
|
|
pred_flows_bi = self.fix_flow_complete.combine_flow(gt_flows_bi, pred_flows_bi, flow_masks) |
|
|
torch.cuda.empty_cache() |
|
|
torch.cuda.empty_cache() |
|
|
gc.collect() |
|
|
|
|
|
|
|
|
masks_dilated_ori = masks_dilated.clone() |
|
|
|
|
|
subvideo_length_img_prop = min(100, subvideo_length) |
|
|
if(len(frames[0]))>subvideo_length_img_prop: |
|
|
sample_rate = len(frames[0])//(subvideo_length_img_prop//2) |
|
|
index_sample = list(range(0, len(frames[0]), sample_rate)) |
|
|
sample_frames = torch.stack([frames[0][i].to(torch.float32) for i in index_sample]).unsqueeze(0) |
|
|
sample_masks_dilated = torch.stack([masks_dilated[0][i] for i in index_sample]).unsqueeze(0) |
|
|
sample_flow_masks = torch.stack([flow_masks[0][i] for i in index_sample]).unsqueeze(0) |
|
|
|
|
|
|
|
|
|
|
|
sample_video_length = sample_frames.size(1) |
|
|
if sample_frames.size(1) > short_clip_len: |
|
|
gt_flows_f_list, gt_flows_b_list = [], [] |
|
|
for f in range(0, sample_video_length, short_clip_len): |
|
|
end_f = min(sample_video_length, f + short_clip_len) |
|
|
if f == 0: |
|
|
flows_f, flows_b = self.fix_raft(sample_frames[:,f:end_f], iters=raft_iter) |
|
|
else: |
|
|
flows_f, flows_b = self.fix_raft(sample_frames[:,f-1:end_f], iters=raft_iter) |
|
|
|
|
|
gt_flows_f_list.append(flows_f) |
|
|
gt_flows_b_list.append(flows_b) |
|
|
torch.cuda.empty_cache() |
|
|
|
|
|
gt_flows_f = torch.cat(gt_flows_f_list, dim=1) |
|
|
gt_flows_b = torch.cat(gt_flows_b_list, dim=1) |
|
|
sample_gt_flows_bi = (gt_flows_f, gt_flows_b) |
|
|
else: |
|
|
sample_gt_flows_bi = self.fix_raft(sample_frames, iters=raft_iter) |
|
|
torch.cuda.empty_cache() |
|
|
torch.cuda.empty_cache() |
|
|
gc.collect() |
|
|
|
|
|
if use_half: |
|
|
sample_frames, sample_flow_masks, sample_masks_dilated = sample_frames.half(), sample_flow_masks.half(), sample_masks_dilated.half() |
|
|
sample_gt_flows_bi = (sample_gt_flows_bi[0].half(), sample_gt_flows_bi[1].half()) |
|
|
|
|
|
|
|
|
flow_length = sample_gt_flows_bi[0].size(1) |
|
|
if flow_length > subvideo_length: |
|
|
pred_flows_f, pred_flows_b = [], [] |
|
|
pad_len = 5 |
|
|
for f in range(0, flow_length, subvideo_length): |
|
|
s_f = max(0, f - pad_len) |
|
|
e_f = min(flow_length, f + subvideo_length + pad_len) |
|
|
pad_len_s = max(0, f) - s_f |
|
|
pad_len_e = e_f - min(flow_length, f + subvideo_length) |
|
|
pred_flows_bi_sub, _ = self.fix_flow_complete.forward_bidirect_flow( |
|
|
(sample_gt_flows_bi[0][:, s_f:e_f], sample_gt_flows_bi[1][:, s_f:e_f]), |
|
|
sample_flow_masks[:, s_f:e_f+1]) |
|
|
pred_flows_bi_sub = self.fix_flow_complete.combine_flow( |
|
|
(sample_gt_flows_bi[0][:, s_f:e_f], sample_gt_flows_bi[1][:, s_f:e_f]), |
|
|
pred_flows_bi_sub, |
|
|
sample_flow_masks[:, s_f:e_f+1]) |
|
|
|
|
|
pred_flows_f.append(pred_flows_bi_sub[0][:, pad_len_s:e_f-s_f-pad_len_e]) |
|
|
pred_flows_b.append(pred_flows_bi_sub[1][:, pad_len_s:e_f-s_f-pad_len_e]) |
|
|
torch.cuda.empty_cache() |
|
|
|
|
|
pred_flows_f = torch.cat(pred_flows_f, dim=1) |
|
|
pred_flows_b = torch.cat(pred_flows_b, dim=1) |
|
|
sample_pred_flows_bi = (pred_flows_f, pred_flows_b) |
|
|
else: |
|
|
sample_pred_flows_bi, _ = self.fix_flow_complete.forward_bidirect_flow(sample_gt_flows_bi, sample_flow_masks) |
|
|
sample_pred_flows_bi = self.fix_flow_complete.combine_flow(sample_gt_flows_bi, sample_pred_flows_bi, sample_flow_masks) |
|
|
torch.cuda.empty_cache() |
|
|
torch.cuda.empty_cache() |
|
|
gc.collect() |
|
|
|
|
|
masked_frames = sample_frames * (1 - sample_masks_dilated) |
|
|
|
|
|
if sample_video_length > subvideo_length_img_prop: |
|
|
updated_frames, updated_masks = [], [] |
|
|
pad_len = 10 |
|
|
for f in range(0, sample_video_length, subvideo_length_img_prop): |
|
|
s_f = max(0, f - pad_len) |
|
|
e_f = min(sample_video_length, f + subvideo_length_img_prop + pad_len) |
|
|
pad_len_s = max(0, f) - s_f |
|
|
pad_len_e = e_f - min(sample_video_length, f + subvideo_length_img_prop) |
|
|
|
|
|
b, t, _, _, _ = sample_masks_dilated[:, s_f:e_f].size() |
|
|
pred_flows_bi_sub = (sample_pred_flows_bi[0][:, s_f:e_f-1], sample_pred_flows_bi[1][:, s_f:e_f-1]) |
|
|
prop_imgs_sub, updated_local_masks_sub = self.model.img_propagation(masked_frames[:, s_f:e_f], |
|
|
pred_flows_bi_sub, |
|
|
sample_masks_dilated[:, s_f:e_f], |
|
|
'nearest') |
|
|
updated_frames_sub = sample_frames[:, s_f:e_f] * (1 - sample_masks_dilated[:, s_f:e_f]) + \ |
|
|
prop_imgs_sub.view(b, t, 3, h, w) * sample_masks_dilated[:, s_f:e_f] |
|
|
updated_masks_sub = updated_local_masks_sub.view(b, t, 1, h, w) |
|
|
|
|
|
updated_frames.append(updated_frames_sub[:, pad_len_s:e_f-s_f-pad_len_e]) |
|
|
updated_masks.append(updated_masks_sub[:, pad_len_s:e_f-s_f-pad_len_e]) |
|
|
torch.cuda.empty_cache() |
|
|
|
|
|
updated_frames = torch.cat(updated_frames, dim=1) |
|
|
updated_masks = torch.cat(updated_masks, dim=1) |
|
|
else: |
|
|
b, t, _, _, _ = sample_masks_dilated.size() |
|
|
prop_imgs, updated_local_masks = self.model.img_propagation(masked_frames, sample_pred_flows_bi, sample_masks_dilated, 'nearest') |
|
|
updated_frames = sample_frames * (1 - sample_masks_dilated) + prop_imgs.view(b, t, 3, h, w) * sample_masks_dilated |
|
|
updated_masks = updated_local_masks.view(b, t, 1, h, w) |
|
|
torch.cuda.empty_cache() |
|
|
|
|
|
|
|
|
for i,index in enumerate(index_sample): |
|
|
frames[0][index] = updated_frames[0][i] |
|
|
masks_dilated[0][index] = updated_masks[0][i] |
|
|
|
|
|
|
|
|
|
|
|
masked_frames = frames * (1 - masks_dilated) |
|
|
subvideo_length_img_prop = min(100, subvideo_length) |
|
|
if video_length > subvideo_length_img_prop: |
|
|
updated_frames, updated_masks = [], [] |
|
|
pad_len = 10 |
|
|
for f in range(0, video_length, subvideo_length_img_prop): |
|
|
s_f = max(0, f - pad_len) |
|
|
e_f = min(video_length, f + subvideo_length_img_prop + pad_len) |
|
|
pad_len_s = max(0, f) - s_f |
|
|
pad_len_e = e_f - min(video_length, f + subvideo_length_img_prop) |
|
|
|
|
|
b, t, _, _, _ = masks_dilated[:, s_f:e_f].size() |
|
|
pred_flows_bi_sub = (pred_flows_bi[0][:, s_f:e_f-1], pred_flows_bi[1][:, s_f:e_f-1]) |
|
|
prop_imgs_sub, updated_local_masks_sub = self.model.img_propagation(masked_frames[:, s_f:e_f], |
|
|
pred_flows_bi_sub, |
|
|
masks_dilated[:, s_f:e_f], |
|
|
'nearest') |
|
|
updated_frames_sub = frames[:, s_f:e_f] * (1 - masks_dilated[:, s_f:e_f]) + \ |
|
|
prop_imgs_sub.view(b, t, 3, h, w) * masks_dilated[:, s_f:e_f] |
|
|
updated_masks_sub = updated_local_masks_sub.view(b, t, 1, h, w) |
|
|
|
|
|
updated_frames.append(updated_frames_sub[:, pad_len_s:e_f-s_f-pad_len_e]) |
|
|
updated_masks.append(updated_masks_sub[:, pad_len_s:e_f-s_f-pad_len_e]) |
|
|
torch.cuda.empty_cache() |
|
|
|
|
|
updated_frames = torch.cat(updated_frames, dim=1) |
|
|
updated_masks = torch.cat(updated_masks, dim=1) |
|
|
else: |
|
|
b, t, _, _, _ = masks_dilated.size() |
|
|
prop_imgs, updated_local_masks = self.model.img_propagation(masked_frames, pred_flows_bi, masks_dilated, 'nearest') |
|
|
updated_frames = frames * (1 - masks_dilated) + prop_imgs.view(b, t, 3, h, w) * masks_dilated |
|
|
updated_masks = updated_local_masks.view(b, t, 1, h, w) |
|
|
torch.cuda.empty_cache() |
|
|
|
|
|
comp_frames = [None] * video_length |
|
|
|
|
|
neighbor_stride = neighbor_length // 2 |
|
|
if video_length > subvideo_length: |
|
|
ref_num = subvideo_length // ref_stride |
|
|
else: |
|
|
ref_num = -1 |
|
|
|
|
|
torch.cuda.empty_cache() |
|
|
|
|
|
for f in tqdm(range(0, video_length, neighbor_stride)): |
|
|
neighbor_ids = [ |
|
|
i for i in range(max(0, f - neighbor_stride), |
|
|
min(video_length, f + neighbor_stride + 1)) |
|
|
] |
|
|
ref_ids = get_ref_index(f, neighbor_ids, video_length, ref_stride, ref_num) |
|
|
selected_imgs = updated_frames[:, neighbor_ids + ref_ids, :, :, :] |
|
|
selected_masks = masks_dilated[:, neighbor_ids + ref_ids, :, :, :] |
|
|
selected_update_masks = updated_masks[:, neighbor_ids + ref_ids, :, :, :] |
|
|
selected_pred_flows_bi = (pred_flows_bi[0][:, neighbor_ids[:-1], :, :, :], pred_flows_bi[1][:, neighbor_ids[:-1], :, :, :]) |
|
|
|
|
|
with torch.no_grad(): |
|
|
|
|
|
l_t = len(neighbor_ids) |
|
|
|
|
|
|
|
|
pred_img = self.model(selected_imgs, selected_pred_flows_bi, selected_masks, selected_update_masks, l_t) |
|
|
pred_img = pred_img.view(-1, 3, h, w) |
|
|
|
|
|
|
|
|
pred_img = (pred_img + 1) / 2 |
|
|
pred_img = pred_img.cpu().permute(0, 2, 3, 1).numpy() * 255 |
|
|
binary_masks = masks_dilated_ori[0, neighbor_ids, :, :, :].cpu().permute( |
|
|
0, 2, 3, 1).numpy().astype(np.uint8) |
|
|
for i in range(len(neighbor_ids)): |
|
|
idx = neighbor_ids[i] |
|
|
img = np.array(pred_img[i]).astype(np.uint8) * binary_masks[i] \ |
|
|
+ ori_frames_inp[idx] * (1 - binary_masks[i]) |
|
|
if comp_frames[idx] is None: |
|
|
comp_frames[idx] = img |
|
|
else: |
|
|
comp_frames[idx] = comp_frames[idx].astype(np.float32) * 0.5 + img.astype(np.float32) * 0.5 |
|
|
|
|
|
comp_frames[idx] = comp_frames[idx].astype(np.uint8) |
|
|
|
|
|
torch.cuda.empty_cache() |
|
|
|
|
|
|
|
|
comp_frames = [cv2.resize(f, out_size) for f in comp_frames] |
|
|
writer = cv2.VideoWriter(output_path, cv2.VideoWriter_fourcc(*"mp4v"), |
|
|
fps, (comp_frames[0].shape[1],comp_frames[0].shape[0])) |
|
|
for f in range(video_length): |
|
|
frame = comp_frames[f].astype(np.uint8) |
|
|
writer.write(cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)) |
|
|
writer.release() |
|
|
|
|
|
torch.cuda.empty_cache() |
|
|
|
|
|
return output_path |
|
|
|
|
|
|
|
|
|
|
|
if __name__ == '__main__': |
|
|
|
|
|
device = get_device() |
|
|
propainter_model_dir = "weights/propainter" |
|
|
propainter = Propainter(propainter_model_dir, device=device) |
|
|
|
|
|
video = "examples/example1/video.mp4" |
|
|
mask = "examples/example1/mask.mp4" |
|
|
output = "results/priori.mp4" |
|
|
res = propainter.forward(video, mask, output) |
|
|
|
|
|
|
|
|
|