|
|
import torch |
|
|
import torch.nn as nn |
|
|
import torch.nn.functional as F |
|
|
import torchvision |
|
|
|
|
|
try: |
|
|
from model.modules.deformconv import ModulatedDeformConv2d |
|
|
from .misc import constant_init |
|
|
except: |
|
|
from propainter.model.modules.deformconv import ModulatedDeformConv2d |
|
|
from propainter.model.misc import constant_init |
|
|
|
|
|
|
|
|
class SecondOrderDeformableAlignment(ModulatedDeformConv2d): |
|
|
"""Second-order deformable alignment module.""" |
|
|
def __init__(self, *args, **kwargs): |
|
|
self.max_residue_magnitude = kwargs.pop('max_residue_magnitude', 5) |
|
|
|
|
|
super(SecondOrderDeformableAlignment, self).__init__(*args, **kwargs) |
|
|
|
|
|
self.conv_offset = nn.Sequential( |
|
|
nn.Conv2d(3 * self.out_channels, self.out_channels, 3, 1, 1), |
|
|
nn.LeakyReLU(negative_slope=0.1, inplace=True), |
|
|
nn.Conv2d(self.out_channels, self.out_channels, 3, 1, 1), |
|
|
nn.LeakyReLU(negative_slope=0.1, inplace=True), |
|
|
nn.Conv2d(self.out_channels, self.out_channels, 3, 1, 1), |
|
|
nn.LeakyReLU(negative_slope=0.1, inplace=True), |
|
|
nn.Conv2d(self.out_channels, 27 * self.deform_groups, 3, 1, 1), |
|
|
) |
|
|
self.init_offset() |
|
|
|
|
|
def init_offset(self): |
|
|
constant_init(self.conv_offset[-1], val=0, bias=0) |
|
|
|
|
|
def forward(self, x, extra_feat): |
|
|
out = self.conv_offset(extra_feat) |
|
|
o1, o2, mask = torch.chunk(out, 3, dim=1) |
|
|
|
|
|
|
|
|
offset = self.max_residue_magnitude * torch.tanh(torch.cat((o1, o2), dim=1)) |
|
|
offset_1, offset_2 = torch.chunk(offset, 2, dim=1) |
|
|
offset = torch.cat([offset_1, offset_2], dim=1) |
|
|
|
|
|
|
|
|
mask = torch.sigmoid(mask) |
|
|
|
|
|
return torchvision.ops.deform_conv2d(x, offset, self.weight, self.bias, |
|
|
self.stride, self.padding, |
|
|
self.dilation, mask) |
|
|
|
|
|
class BidirectionalPropagation(nn.Module): |
|
|
def __init__(self, channel): |
|
|
super(BidirectionalPropagation, self).__init__() |
|
|
modules = ['backward_', 'forward_'] |
|
|
self.deform_align = nn.ModuleDict() |
|
|
self.backbone = nn.ModuleDict() |
|
|
self.channel = channel |
|
|
|
|
|
for i, module in enumerate(modules): |
|
|
self.deform_align[module] = SecondOrderDeformableAlignment( |
|
|
2 * channel, channel, 3, padding=1, deform_groups=16) |
|
|
|
|
|
self.backbone[module] = nn.Sequential( |
|
|
nn.Conv2d((2 + i) * channel, channel, 3, 1, 1), |
|
|
nn.LeakyReLU(negative_slope=0.1, inplace=True), |
|
|
nn.Conv2d(channel, channel, 3, 1, 1), |
|
|
) |
|
|
|
|
|
self.fusion = nn.Conv2d(2 * channel, channel, 1, 1, 0) |
|
|
|
|
|
def forward(self, x): |
|
|
""" |
|
|
x shape : [b, t, c, h, w] |
|
|
return [b, t, c, h, w] |
|
|
""" |
|
|
b, t, c, h, w = x.shape |
|
|
feats = {} |
|
|
feats['spatial'] = [x[:, i, :, :, :] for i in range(0, t)] |
|
|
|
|
|
for module_name in ['backward_', 'forward_']: |
|
|
|
|
|
feats[module_name] = [] |
|
|
|
|
|
frame_idx = range(0, t) |
|
|
mapping_idx = list(range(0, len(feats['spatial']))) |
|
|
mapping_idx += mapping_idx[::-1] |
|
|
|
|
|
if 'backward' in module_name: |
|
|
frame_idx = frame_idx[::-1] |
|
|
|
|
|
feat_prop = x.new_zeros(b, self.channel, h, w) |
|
|
for i, idx in enumerate(frame_idx): |
|
|
feat_current = feats['spatial'][mapping_idx[idx]] |
|
|
if i > 0: |
|
|
cond_n1 = feat_prop |
|
|
|
|
|
|
|
|
feat_n2 = torch.zeros_like(feat_prop) |
|
|
cond_n2 = torch.zeros_like(cond_n1) |
|
|
if i > 1: |
|
|
feat_n2 = feats[module_name][-2] |
|
|
cond_n2 = feat_n2 |
|
|
|
|
|
cond = torch.cat([cond_n1, feat_current, cond_n2], dim=1) |
|
|
feat_prop = torch.cat([feat_prop, feat_n2], dim=1) |
|
|
feat_prop = self.deform_align[module_name](feat_prop, cond) |
|
|
|
|
|
|
|
|
feat = [feat_current] + \ |
|
|
[feats[k][idx] for k in feats if k not in ['spatial', module_name]] \ |
|
|
+ [feat_prop] |
|
|
|
|
|
feat = torch.cat(feat, dim=1) |
|
|
|
|
|
feat_prop = feat_prop + self.backbone[module_name](feat) |
|
|
|
|
|
feats[module_name].append(feat_prop) |
|
|
|
|
|
|
|
|
if 'backward' in module_name: |
|
|
feats[module_name] = feats[module_name][::-1] |
|
|
|
|
|
outputs = [] |
|
|
for i in range(0, t): |
|
|
align_feats = [feats[k].pop(0) for k in feats if k != 'spatial'] |
|
|
align_feats = torch.cat(align_feats, dim=1) |
|
|
outputs.append(self.fusion(align_feats)) |
|
|
|
|
|
return torch.stack(outputs, dim=1) + x |
|
|
|
|
|
|
|
|
class deconv(nn.Module): |
|
|
def __init__(self, |
|
|
input_channel, |
|
|
output_channel, |
|
|
kernel_size=3, |
|
|
padding=0): |
|
|
super().__init__() |
|
|
self.conv = nn.Conv2d(input_channel, |
|
|
output_channel, |
|
|
kernel_size=kernel_size, |
|
|
stride=1, |
|
|
padding=padding) |
|
|
|
|
|
def forward(self, x): |
|
|
x = F.interpolate(x, |
|
|
scale_factor=2, |
|
|
mode='bilinear', |
|
|
align_corners=True) |
|
|
return self.conv(x) |
|
|
|
|
|
|
|
|
class P3DBlock(nn.Module): |
|
|
def __init__(self, in_channels, out_channels, kernel_size, stride, padding, use_residual=0, bias=True): |
|
|
super().__init__() |
|
|
self.conv1 = nn.Sequential( |
|
|
nn.Conv3d(in_channels, out_channels, kernel_size=(1, kernel_size, kernel_size), |
|
|
stride=(1, stride, stride), padding=(0, padding, padding), bias=bias), |
|
|
nn.LeakyReLU(0.2, inplace=True) |
|
|
) |
|
|
self.conv2 = nn.Sequential( |
|
|
nn.Conv3d(out_channels, out_channels, kernel_size=(3, 1, 1), stride=(1, 1, 1), |
|
|
padding=(2, 0, 0), dilation=(2, 1, 1), bias=bias) |
|
|
) |
|
|
self.use_residual = use_residual |
|
|
|
|
|
def forward(self, feats): |
|
|
feat1 = self.conv1(feats) |
|
|
feat2 = self.conv2(feat1) |
|
|
if self.use_residual: |
|
|
output = feats + feat2 |
|
|
else: |
|
|
output = feat2 |
|
|
return output |
|
|
|
|
|
|
|
|
class EdgeDetection(nn.Module): |
|
|
def __init__(self, in_ch=2, out_ch=1, mid_ch=16): |
|
|
super().__init__() |
|
|
self.projection = nn.Sequential( |
|
|
nn.Conv2d(in_ch, mid_ch, 3, 1, 1), |
|
|
nn.LeakyReLU(0.2, inplace=True) |
|
|
) |
|
|
|
|
|
self.mid_layer_1 = nn.Sequential( |
|
|
nn.Conv2d(mid_ch, mid_ch, 3, 1, 1), |
|
|
nn.LeakyReLU(0.2, inplace=True) |
|
|
) |
|
|
|
|
|
self.mid_layer_2 = nn.Sequential( |
|
|
nn.Conv2d(mid_ch, mid_ch, 3, 1, 1) |
|
|
) |
|
|
|
|
|
self.l_relu = nn.LeakyReLU(0.01, inplace=True) |
|
|
|
|
|
self.out_layer = nn.Conv2d(mid_ch, out_ch, 1, 1, 0) |
|
|
|
|
|
def forward(self, flow): |
|
|
flow = self.projection(flow) |
|
|
edge = self.mid_layer_1(flow) |
|
|
edge = self.mid_layer_2(edge) |
|
|
edge = self.l_relu(flow + edge) |
|
|
edge = self.out_layer(edge) |
|
|
edge = torch.sigmoid(edge) |
|
|
return edge |
|
|
|
|
|
|
|
|
class RecurrentFlowCompleteNet(nn.Module): |
|
|
def __init__(self, model_path=None): |
|
|
super().__init__() |
|
|
self.downsample = nn.Sequential( |
|
|
nn.Conv3d(3, 32, kernel_size=(1, 5, 5), stride=(1, 2, 2), |
|
|
padding=(0, 2, 2), padding_mode='replicate'), |
|
|
nn.LeakyReLU(0.2, inplace=True) |
|
|
) |
|
|
|
|
|
self.encoder1 = nn.Sequential( |
|
|
P3DBlock(32, 32, 3, 1, 1), |
|
|
nn.LeakyReLU(0.2, inplace=True), |
|
|
P3DBlock(32, 64, 3, 2, 1), |
|
|
nn.LeakyReLU(0.2, inplace=True) |
|
|
) |
|
|
|
|
|
self.encoder2 = nn.Sequential( |
|
|
P3DBlock(64, 64, 3, 1, 1), |
|
|
nn.LeakyReLU(0.2, inplace=True), |
|
|
P3DBlock(64, 128, 3, 2, 1), |
|
|
nn.LeakyReLU(0.2, inplace=True) |
|
|
) |
|
|
|
|
|
self.mid_dilation = nn.Sequential( |
|
|
nn.Conv3d(128, 128, (1, 3, 3), (1, 1, 1), padding=(0, 3, 3), dilation=(1, 3, 3)), |
|
|
nn.LeakyReLU(0.2, inplace=True), |
|
|
nn.Conv3d(128, 128, (1, 3, 3), (1, 1, 1), padding=(0, 2, 2), dilation=(1, 2, 2)), |
|
|
nn.LeakyReLU(0.2, inplace=True), |
|
|
nn.Conv3d(128, 128, (1, 3, 3), (1, 1, 1), padding=(0, 1, 1), dilation=(1, 1, 1)), |
|
|
nn.LeakyReLU(0.2, inplace=True) |
|
|
) |
|
|
|
|
|
|
|
|
self.feat_prop_module = BidirectionalPropagation(128) |
|
|
|
|
|
self.decoder2 = nn.Sequential( |
|
|
nn.Conv2d(128, 128, 3, 1, 1), |
|
|
nn.LeakyReLU(0.2, inplace=True), |
|
|
deconv(128, 64, 3, 1), |
|
|
nn.LeakyReLU(0.2, inplace=True) |
|
|
) |
|
|
|
|
|
self.decoder1 = nn.Sequential( |
|
|
nn.Conv2d(64, 64, 3, 1, 1), |
|
|
nn.LeakyReLU(0.2, inplace=True), |
|
|
deconv(64, 32, 3, 1), |
|
|
nn.LeakyReLU(0.2, inplace=True) |
|
|
) |
|
|
|
|
|
self.upsample = nn.Sequential( |
|
|
nn.Conv2d(32, 32, 3, padding=1), |
|
|
nn.LeakyReLU(0.2, inplace=True), |
|
|
deconv(32, 2, 3, 1) |
|
|
) |
|
|
|
|
|
|
|
|
self.edgeDetector = EdgeDetection(in_ch=2, out_ch=1, mid_ch=16) |
|
|
|
|
|
|
|
|
for m in self.modules(): |
|
|
if isinstance(m, SecondOrderDeformableAlignment): |
|
|
m.init_offset() |
|
|
|
|
|
if model_path is not None: |
|
|
|
|
|
ckpt = torch.load(model_path, map_location='cpu') |
|
|
self.load_state_dict(ckpt, strict=True) |
|
|
|
|
|
|
|
|
def forward(self, masked_flows, masks): |
|
|
|
|
|
|
|
|
b, t, _, h, w = masked_flows.size() |
|
|
masked_flows = masked_flows.permute(0,2,1,3,4) |
|
|
masks = masks.permute(0,2,1,3,4) |
|
|
|
|
|
inputs = torch.cat((masked_flows, masks), dim=1) |
|
|
|
|
|
x = self.downsample(inputs) |
|
|
|
|
|
feat_e1 = self.encoder1(x) |
|
|
feat_e2 = self.encoder2(feat_e1) |
|
|
feat_mid = self.mid_dilation(feat_e2) |
|
|
feat_mid = feat_mid.permute(0,2,1,3,4) |
|
|
|
|
|
feat_prop = self.feat_prop_module(feat_mid) |
|
|
feat_prop = feat_prop.view(-1, 128, h//8, w//8) |
|
|
|
|
|
_, c, _, h_f, w_f = feat_e1.shape |
|
|
feat_e1 = feat_e1.permute(0,2,1,3,4).contiguous().view(-1, c, h_f, w_f) |
|
|
feat_d2 = self.decoder2(feat_prop) + feat_e1 |
|
|
|
|
|
_, c, _, h_f, w_f = x.shape |
|
|
x = x.permute(0,2,1,3,4).contiguous().view(-1, c, h_f, w_f) |
|
|
|
|
|
feat_d1 = self.decoder1(feat_d2) |
|
|
|
|
|
flow = self.upsample(feat_d1) |
|
|
if self.training: |
|
|
edge = self.edgeDetector(flow) |
|
|
edge = edge.view(b, t, 1, h, w) |
|
|
else: |
|
|
edge = None |
|
|
|
|
|
flow = flow.view(b, t, 2, h, w) |
|
|
|
|
|
return flow, edge |
|
|
|
|
|
|
|
|
def forward_bidirect_flow(self, masked_flows_bi, masks): |
|
|
""" |
|
|
Args: |
|
|
masked_flows_bi: [masked_flows_f, masked_flows_b] | (b t-1 2 h w), (b t-1 2 h w) |
|
|
masks: b t 1 h w |
|
|
""" |
|
|
masks_forward = masks[:, :-1, ...].contiguous() |
|
|
masks_backward = masks[:, 1:, ...].contiguous() |
|
|
|
|
|
|
|
|
masked_flows_forward = masked_flows_bi[0] * (1-masks_forward) |
|
|
masked_flows_backward = masked_flows_bi[1] * (1-masks_backward) |
|
|
|
|
|
|
|
|
|
|
|
pred_flows_forward, pred_edges_forward = self.forward(masked_flows_forward, masks_forward) |
|
|
|
|
|
|
|
|
masked_flows_backward = torch.flip(masked_flows_backward, dims=[1]) |
|
|
masks_backward = torch.flip(masks_backward, dims=[1]) |
|
|
pred_flows_backward, pred_edges_backward = self.forward(masked_flows_backward, masks_backward) |
|
|
pred_flows_backward = torch.flip(pred_flows_backward, dims=[1]) |
|
|
if self.training: |
|
|
pred_edges_backward = torch.flip(pred_edges_backward, dims=[1]) |
|
|
|
|
|
return [pred_flows_forward, pred_flows_backward], [pred_edges_forward, pred_edges_backward] |
|
|
|
|
|
|
|
|
def combine_flow(self, masked_flows_bi, pred_flows_bi, masks): |
|
|
masks_forward = masks[:, :-1, ...].contiguous() |
|
|
masks_backward = masks[:, 1:, ...].contiguous() |
|
|
|
|
|
pred_flows_forward = pred_flows_bi[0] * masks_forward + masked_flows_bi[0] * (1-masks_forward) |
|
|
pred_flows_backward = pred_flows_bi[1] * masks_backward + masked_flows_bi[1] * (1-masks_backward) |
|
|
|
|
|
return pred_flows_forward, pred_flows_backward |
|
|
|