Spaces:
Runtime error
Runtime error
Logging
Browse files
app.py
CHANGED
|
@@ -17,6 +17,10 @@ from PIL import Image
|
|
| 17 |
from trellis.pipelines import TrellisImageTo3DPipeline
|
| 18 |
from trellis.representations import Gaussian, MeshExtractResult
|
| 19 |
from trellis.utils import render_utils, postprocessing_utils
|
|
|
|
|
|
|
|
|
|
|
|
|
| 20 |
NUM_INFERENCE_STEPS = 8
|
| 21 |
huggingface_token = os.getenv("HUGGINGFACE_TOKEN")
|
| 22 |
# Constants
|
|
@@ -24,17 +28,29 @@ MAX_SEED = np.iinfo(np.int32).max
|
|
| 24 |
TMP_DIR = os.path.join(os.path.dirname(os.path.abspath(__file__)), 'tmp')
|
| 25 |
os.makedirs(TMP_DIR, exist_ok=True)
|
| 26 |
|
| 27 |
-
# Funciones auxiliares
|
| 28 |
def start_session(req: gr.Request):
|
| 29 |
-
|
|
|
|
|
|
|
| 30 |
os.makedirs(user_dir, exist_ok=True)
|
| 31 |
|
| 32 |
def end_session(req: gr.Request):
|
| 33 |
-
|
| 34 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 35 |
|
| 36 |
def preprocess_image(image: Image.Image) -> Image.Image:
|
|
|
|
| 37 |
processed_image = trellis_pipeline.preprocess_image(image)
|
|
|
|
| 38 |
return processed_image
|
| 39 |
|
| 40 |
def pack_state(gs: Gaussian, mesh: MeshExtractResult) -> dict:
|
|
@@ -74,7 +90,9 @@ def unpack_state(state: dict) -> Tuple[Gaussian, edict]:
|
|
| 74 |
return gs, mesh
|
| 75 |
|
| 76 |
def get_seed(randomize_seed: bool, seed: int) -> int:
|
| 77 |
-
|
|
|
|
|
|
|
| 78 |
|
| 79 |
@spaces.GPU
|
| 80 |
def generate_flux_image(
|
|
@@ -87,13 +105,15 @@ def generate_flux_image(
|
|
| 87 |
req: gr.Request,
|
| 88 |
progress: gr.Progress = gr.Progress(track_tqdm=True),
|
| 89 |
) -> Image.Image:
|
| 90 |
-
|
|
|
|
| 91 |
if randomize_seed:
|
| 92 |
seed = random.randint(0, MAX_SEED)
|
|
|
|
| 93 |
generator = torch.Generator(device=device).manual_seed(seed)
|
| 94 |
-
|
| 95 |
image = flux_pipeline(
|
| 96 |
-
prompt=
|
| 97 |
guidance_scale=guidance_scale,
|
| 98 |
num_inference_steps=NUM_INFERENCE_STEPS,
|
| 99 |
width=width,
|
|
@@ -101,13 +121,12 @@ def generate_flux_image(
|
|
| 101 |
generator=generator,
|
| 102 |
).images[0]
|
| 103 |
|
| 104 |
-
user_dir = os.path.join(TMP_DIR,
|
| 105 |
-
os.makedirs(user_dir, exist_ok=True)
|
| 106 |
-
|
| 107 |
-
|
| 108 |
-
filename = f"{timestamp}_{unique_id}.png"
|
| 109 |
-
filepath = os.path.join(user_dir, filename)
|
| 110 |
image.save(filepath)
|
|
|
|
| 111 |
return image
|
| 112 |
|
| 113 |
@spaces.GPU
|
|
@@ -120,7 +139,9 @@ def image_to_3d(
|
|
| 120 |
slat_sampling_steps: int,
|
| 121 |
req: gr.Request,
|
| 122 |
) -> Tuple[dict, str]:
|
| 123 |
-
|
|
|
|
|
|
|
| 124 |
outputs = trellis_pipeline.run(
|
| 125 |
image,
|
| 126 |
seed=seed,
|
|
@@ -135,6 +156,7 @@ def image_to_3d(
|
|
| 135 |
"cfg_strength": slat_guidance_strength,
|
| 136 |
},
|
| 137 |
)
|
|
|
|
| 138 |
video = render_utils.render_video(outputs['gaussian'][0], num_frames=120)['color']
|
| 139 |
video_geo = render_utils.render_video(outputs['mesh'][0], num_frames=120)['normal']
|
| 140 |
video = [np.concatenate([video[i], video_geo[i]], axis=1) for i in range(len(video))]
|
|
@@ -142,6 +164,7 @@ def image_to_3d(
|
|
| 142 |
imageio.mimsave(video_path, video, fps=15)
|
| 143 |
state = pack_state(outputs['gaussian'][0], outputs['mesh'][0])
|
| 144 |
torch.cuda.empty_cache()
|
|
|
|
| 145 |
return state, video_path
|
| 146 |
|
| 147 |
@spaces.GPU(duration=90)
|
|
@@ -151,12 +174,15 @@ def extract_glb(
|
|
| 151 |
texture_size: int,
|
| 152 |
req: gr.Request,
|
| 153 |
) -> Tuple[str, str]:
|
| 154 |
-
|
|
|
|
|
|
|
| 155 |
gs, mesh = unpack_state(state)
|
| 156 |
glb = postprocessing_utils.to_glb(gs, mesh, simplify=mesh_simplify, texture_size=texture_size, verbose=False)
|
| 157 |
glb_path = os.path.join(user_dir, 'sample.glb')
|
| 158 |
glb.export(glb_path)
|
| 159 |
torch.cuda.empty_cache()
|
|
|
|
| 160 |
return glb_path, glb_path
|
| 161 |
|
| 162 |
# Interfaz Gradio
|
|
@@ -194,8 +220,7 @@ with gr.Blocks() as demo:
|
|
| 194 |
|
| 195 |
with gr.Row():
|
| 196 |
download_glb = gr.DownloadButton(label="Download GLB", interactive=False)
|
| 197 |
-
|
| 198 |
-
# Variables adicionales para la generaci贸n 3D
|
| 199 |
with gr.Accordion("3D Generation Settings", open=False):
|
| 200 |
gr.Markdown("Stage 1: Sparse Structure Generation")
|
| 201 |
with gr.Row():
|
|
@@ -205,15 +230,13 @@ with gr.Blocks() as demo:
|
|
| 205 |
with gr.Row():
|
| 206 |
slat_guidance_strength = gr.Slider(0.0, 10.0, label="Guidance Strength", value=3.0, step=0.1)
|
| 207 |
slat_sampling_steps = gr.Slider(1, 50, label="Sampling Steps", value=12, step=1)
|
| 208 |
-
|
| 209 |
-
# Variables para la extracci贸n de GLB
|
| 210 |
with gr.Accordion("GLB Extraction Settings", open=False):
|
| 211 |
mesh_simplify = gr.Slider(0.9, 0.98, label="Simplify", value=0.95, step=0.01)
|
| 212 |
texture_size = gr.Slider(512, 2048, label="Texture Size", value=1024, step=512)
|
| 213 |
|
| 214 |
output_buf = gr.State()
|
| 215 |
-
|
| 216 |
-
# Event handlers
|
| 217 |
demo.load(start_session)
|
| 218 |
demo.unload(end_session)
|
| 219 |
|
|
|
|
| 17 |
from trellis.pipelines import TrellisImageTo3DPipeline
|
| 18 |
from trellis.representations import Gaussian, MeshExtractResult
|
| 19 |
from trellis.utils import render_utils, postprocessing_utils
|
| 20 |
+
import logging
|
| 21 |
+
|
| 22 |
+
logging.basicConfig(level=logging.INFO, format='%(asctime)s - HF_SPACE_IMG - %(levelname)s - %(message)s')
|
| 23 |
+
|
| 24 |
NUM_INFERENCE_STEPS = 8
|
| 25 |
huggingface_token = os.getenv("HUGGINGFACE_TOKEN")
|
| 26 |
# Constants
|
|
|
|
| 28 |
TMP_DIR = os.path.join(os.path.dirname(os.path.abspath(__file__)), 'tmp')
|
| 29 |
os.makedirs(TMP_DIR, exist_ok=True)
|
| 30 |
|
|
|
|
| 31 |
def start_session(req: gr.Request):
|
| 32 |
+
session_hash = str(req.session_hash)
|
| 33 |
+
user_dir = os.path.join(TMP_DIR, session_hash)
|
| 34 |
+
logging.info(f"START SESSION: Creando directorio para la sesi贸n {session_hash} en {user_dir}")
|
| 35 |
os.makedirs(user_dir, exist_ok=True)
|
| 36 |
|
| 37 |
def end_session(req: gr.Request):
|
| 38 |
+
session_hash = str(req.session_hash)
|
| 39 |
+
user_dir = os.path.join(TMP_DIR, session_hash)
|
| 40 |
+
logging.info(f"END SESSION: Intentando eliminar el directorio de la sesi贸n {session_hash} en {user_dir}")
|
| 41 |
+
if os.path.exists(user_dir):
|
| 42 |
+
try:
|
| 43 |
+
shutil.rmtree(user_dir)
|
| 44 |
+
logging.info(f"Directorio de la sesi贸n {session_hash} eliminado correctamente.")
|
| 45 |
+
except Exception as e:
|
| 46 |
+
logging.error(f"Error al eliminar el directorio de la sesi贸n {session_hash}: {e}")
|
| 47 |
+
else:
|
| 48 |
+
logging.warning(f"El directorio de la sesi贸n {session_hash} no fue encontrado al intentar eliminarlo. Es posible que ya haya sido limpiado.")
|
| 49 |
|
| 50 |
def preprocess_image(image: Image.Image) -> Image.Image:
|
| 51 |
+
logging.info("Preprocesando imagen para Trellis...")
|
| 52 |
processed_image = trellis_pipeline.preprocess_image(image)
|
| 53 |
+
logging.info("Preprocesamiento de imagen completado.")
|
| 54 |
return processed_image
|
| 55 |
|
| 56 |
def pack_state(gs: Gaussian, mesh: MeshExtractResult) -> dict:
|
|
|
|
| 90 |
return gs, mesh
|
| 91 |
|
| 92 |
def get_seed(randomize_seed: bool, seed: int) -> int:
|
| 93 |
+
new_seed = np.random.randint(0, MAX_SEED) if randomize_seed else seed
|
| 94 |
+
logging.info(f"Usando seed: {new_seed}")
|
| 95 |
+
return new_seed
|
| 96 |
|
| 97 |
@spaces.GPU
|
| 98 |
def generate_flux_image(
|
|
|
|
| 105 |
req: gr.Request,
|
| 106 |
progress: gr.Progress = gr.Progress(track_tqdm=True),
|
| 107 |
) -> Image.Image:
|
| 108 |
+
session_hash = str(req.session_hash)
|
| 109 |
+
logging.info(f"[{session_hash}] Iniciando generate_flux_image con prompt: '{prompt[:50]}...'")
|
| 110 |
if randomize_seed:
|
| 111 |
seed = random.randint(0, MAX_SEED)
|
| 112 |
+
logging.info(f"[{session_hash}] Seed aleatorizado a: {seed}")
|
| 113 |
generator = torch.Generator(device=device).manual_seed(seed)
|
| 114 |
+
full_prompt = "wbgmsst, " + prompt + ", 3D isometric, white background"
|
| 115 |
image = flux_pipeline(
|
| 116 |
+
prompt=full_prompt,
|
| 117 |
guidance_scale=guidance_scale,
|
| 118 |
num_inference_steps=NUM_INFERENCE_STEPS,
|
| 119 |
width=width,
|
|
|
|
| 121 |
generator=generator,
|
| 122 |
).images[0]
|
| 123 |
|
| 124 |
+
user_dir = os.path.join(TMP_DIR, session_hash)
|
| 125 |
+
os.makedirs(user_dir, exist_ok=True)
|
| 126 |
+
|
| 127 |
+
filepath = os.path.join(user_dir, "generated_2d_image.png")
|
|
|
|
|
|
|
| 128 |
image.save(filepath)
|
| 129 |
+
logging.info(f"[{session_hash}] Imagen 2D guardada en: {filepath}")
|
| 130 |
return image
|
| 131 |
|
| 132 |
@spaces.GPU
|
|
|
|
| 139 |
slat_sampling_steps: int,
|
| 140 |
req: gr.Request,
|
| 141 |
) -> Tuple[dict, str]:
|
| 142 |
+
session_hash = str(req.session_hash)
|
| 143 |
+
logging.info(f"[{session_hash}] Iniciando image_to_3d...")
|
| 144 |
+
user_dir = os.path.join(TMP_DIR, session_hash)
|
| 145 |
outputs = trellis_pipeline.run(
|
| 146 |
image,
|
| 147 |
seed=seed,
|
|
|
|
| 156 |
"cfg_strength": slat_guidance_strength,
|
| 157 |
},
|
| 158 |
)
|
| 159 |
+
logging.info(f"[{session_hash}] Generaci贸n 3D completada. Renderizando video...")
|
| 160 |
video = render_utils.render_video(outputs['gaussian'][0], num_frames=120)['color']
|
| 161 |
video_geo = render_utils.render_video(outputs['mesh'][0], num_frames=120)['normal']
|
| 162 |
video = [np.concatenate([video[i], video_geo[i]], axis=1) for i in range(len(video))]
|
|
|
|
| 164 |
imageio.mimsave(video_path, video, fps=15)
|
| 165 |
state = pack_state(outputs['gaussian'][0], outputs['mesh'][0])
|
| 166 |
torch.cuda.empty_cache()
|
| 167 |
+
logging.info(f"[{session_hash}] Video renderizado y estado empaquetado. Devolviendo: {video_path}")
|
| 168 |
return state, video_path
|
| 169 |
|
| 170 |
@spaces.GPU(duration=90)
|
|
|
|
| 174 |
texture_size: int,
|
| 175 |
req: gr.Request,
|
| 176 |
) -> Tuple[str, str]:
|
| 177 |
+
session_hash = str(req.session_hash)
|
| 178 |
+
logging.info(f"[{session_hash}] Iniciando extract_glb...")
|
| 179 |
+
user_dir = os.path.join(TMP_DIR, session_hash)
|
| 180 |
gs, mesh = unpack_state(state)
|
| 181 |
glb = postprocessing_utils.to_glb(gs, mesh, simplify=mesh_simplify, texture_size=texture_size, verbose=False)
|
| 182 |
glb_path = os.path.join(user_dir, 'sample.glb')
|
| 183 |
glb.export(glb_path)
|
| 184 |
torch.cuda.empty_cache()
|
| 185 |
+
logging.info(f"[{session_hash}] GLB extra铆do. Devolviendo: {glb_path}")
|
| 186 |
return glb_path, glb_path
|
| 187 |
|
| 188 |
# Interfaz Gradio
|
|
|
|
| 220 |
|
| 221 |
with gr.Row():
|
| 222 |
download_glb = gr.DownloadButton(label="Download GLB", interactive=False)
|
| 223 |
+
|
|
|
|
| 224 |
with gr.Accordion("3D Generation Settings", open=False):
|
| 225 |
gr.Markdown("Stage 1: Sparse Structure Generation")
|
| 226 |
with gr.Row():
|
|
|
|
| 230 |
with gr.Row():
|
| 231 |
slat_guidance_strength = gr.Slider(0.0, 10.0, label="Guidance Strength", value=3.0, step=0.1)
|
| 232 |
slat_sampling_steps = gr.Slider(1, 50, label="Sampling Steps", value=12, step=1)
|
| 233 |
+
|
|
|
|
| 234 |
with gr.Accordion("GLB Extraction Settings", open=False):
|
| 235 |
mesh_simplify = gr.Slider(0.9, 0.98, label="Simplify", value=0.95, step=0.01)
|
| 236 |
texture_size = gr.Slider(512, 2048, label="Texture Size", value=1024, step=512)
|
| 237 |
|
| 238 |
output_buf = gr.State()
|
| 239 |
+
|
|
|
|
| 240 |
demo.load(start_session)
|
| 241 |
demo.unload(end_session)
|
| 242 |
|