Spaces:
Running
on
Zero
Running
on
Zero
| import math | |
| from typing import Any, Dict, List, Optional, Tuple, Union | |
| import torch | |
| import torch.nn.functional as F | |
| import utils | |
| from accelerate import Accelerator | |
| from accelerate.utils import ( | |
| DistributedDataParallelKwargs, | |
| ProjectConfiguration, | |
| set_seed, | |
| ) | |
| from diffusers import StableDiffusionXLPipeline | |
| from diffusers.image_processor import PipelineImageInput | |
| from diffusers.utils.torch_utils import is_compiled_module | |
| from losses import * | |
| # from peft import LoraConfig, set_peft_model_state_dict | |
| from tqdm import tqdm | |
| class ADPipeline(StableDiffusionXLPipeline): | |
| def freeze(self): | |
| self.unet.requires_grad_(False) | |
| self.text_encoder.requires_grad_(False) | |
| self.text_encoder_2.requires_grad_(False) | |
| self.vae.requires_grad_(False) | |
| self.classifier.requires_grad_(False) | |
| def image2latent(self, image): | |
| dtype = next(self.vae.parameters()).dtype | |
| device = self._execution_device | |
| image = image.to(device=device, dtype=dtype) * 2.0 - 1.0 | |
| latent = self.vae.encode(image)["latent_dist"].mean | |
| latent = latent * self.vae.config.scaling_factor | |
| return latent | |
| def latent2image(self, latent): | |
| dtype = next(self.vae.parameters()).dtype | |
| device = self._execution_device | |
| latent = latent.to(device=device, dtype=dtype) | |
| latent = latent / self.vae.config.scaling_factor | |
| image = self.vae.decode(latent)[0] | |
| return (image * 0.5 + 0.5).clamp(0, 1) | |
| def init(self, enable_gradient_checkpoint): | |
| self.freeze() | |
| weight_dtype = torch.float32 | |
| if self.accelerator.mixed_precision == "fp16": | |
| weight_dtype = torch.float16 | |
| elif self.accelerator.mixed_precision == "bf16": | |
| weight_dtype = torch.bfloat16 | |
| # Move unet, vae and text_encoder to device and cast to weight_dtype | |
| self.unet.to(self.accelerator.device, dtype=weight_dtype) | |
| self.vae.to(self.accelerator.device, dtype=weight_dtype) | |
| self.text_encoder.to(self.accelerator.device, dtype=weight_dtype) | |
| self.text_encoder_2.to(self.accelerator.device, dtype=weight_dtype) | |
| self.classifier.to(self.accelerator.device, dtype=weight_dtype) | |
| self.classifier = self.accelerator.prepare(self.classifier) | |
| if enable_gradient_checkpoint: | |
| self.classifier.enable_gradient_checkpointing() | |
| # self.classifier.train() | |
| def sample( | |
| self, | |
| lr=0.05, | |
| iters=1, | |
| adain=True, | |
| controller=None, | |
| style_image=None, | |
| mixed_precision="no", | |
| init_from_style=False, | |
| start_time=999, | |
| prompt: Union[str, List[str]] = None, | |
| prompt_2: Optional[Union[str, List[str]]] = None, | |
| height: Optional[int] = None, | |
| width: Optional[int] = None, | |
| num_inference_steps: int = 50, | |
| denoising_end: Optional[float] = None, | |
| guidance_scale: float = 5.0, | |
| negative_prompt: Optional[Union[str, List[str]]] = None, | |
| negative_prompt_2: Optional[Union[str, List[str]]] = None, | |
| num_images_per_prompt: Optional[int] = 1, | |
| generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, | |
| latents: Optional[torch.Tensor] = None, | |
| prompt_embeds: Optional[torch.Tensor] = None, | |
| negative_prompt_embeds: Optional[torch.Tensor] = None, | |
| pooled_prompt_embeds: Optional[torch.Tensor] = None, | |
| negative_pooled_prompt_embeds: Optional[torch.Tensor] = None, | |
| ip_adapter_image: Optional[PipelineImageInput] = None, | |
| ip_adapter_image_embeds: Optional[List[torch.Tensor]] = None, | |
| cross_attention_kwargs: Optional[Dict[str, Any]] = None, | |
| guidance_rescale: float = 0.0, | |
| original_size: Optional[Tuple[int, int]] = None, | |
| crops_coords_top_left: Tuple[int, int] = (0, 0), | |
| target_size: Optional[Tuple[int, int]] = None, | |
| negative_original_size: Optional[Tuple[int, int]] = None, | |
| negative_crops_coords_top_left: Tuple[int, int] = (0, 0), | |
| negative_target_size: Optional[Tuple[int, int]] = None, | |
| clip_skip: Optional[int] = None, | |
| enable_gradient_checkpoint=False, | |
| **kwargs, | |
| ): | |
| # 0. Default height and width to unet | |
| height = height or self.default_sample_size * self.vae_scale_factor | |
| width = width or self.default_sample_size * self.vae_scale_factor | |
| original_size = original_size or (height, width) | |
| target_size = target_size or (height, width) | |
| self._guidance_scale = guidance_scale | |
| self._guidance_rescale = guidance_rescale | |
| self._clip_skip = clip_skip | |
| self._cross_attention_kwargs = cross_attention_kwargs | |
| self._denoising_end = denoising_end | |
| self._interrupt = False | |
| self.accelerator = Accelerator( | |
| mixed_precision=mixed_precision, gradient_accumulation_steps=1 | |
| ) | |
| self.init(enable_gradient_checkpoint) | |
| # 2. Define call parameters | |
| if prompt is not None and isinstance(prompt, str): | |
| batch_size = 1 | |
| elif prompt is not None and isinstance(prompt, list): | |
| batch_size = len(prompt) | |
| else: | |
| batch_size = prompt_embeds.shape[0] | |
| device = self._execution_device | |
| # 3. Encode input prompt | |
| lora_scale = ( | |
| self.cross_attention_kwargs.get("scale", None) | |
| if self.cross_attention_kwargs is not None | |
| else None | |
| ) | |
| ( | |
| prompt_embeds, | |
| negative_prompt_embeds, | |
| pooled_prompt_embeds, | |
| negative_pooled_prompt_embeds, | |
| ) = self.encode_prompt( | |
| prompt=prompt, | |
| prompt_2=prompt_2, | |
| device=device, | |
| num_images_per_prompt=num_images_per_prompt, | |
| do_classifier_free_guidance=self.do_classifier_free_guidance, | |
| negative_prompt=negative_prompt, | |
| negative_prompt_2=negative_prompt_2, | |
| prompt_embeds=prompt_embeds, | |
| negative_prompt_embeds=negative_prompt_embeds, | |
| pooled_prompt_embeds=pooled_prompt_embeds, | |
| negative_pooled_prompt_embeds=negative_pooled_prompt_embeds, | |
| lora_scale=lora_scale, | |
| clip_skip=self.clip_skip, | |
| ) | |
| # 5. Prepare latent variables | |
| num_channels_latents = self.unet.config.in_channels | |
| latents = self.prepare_latents( | |
| batch_size * num_images_per_prompt, | |
| num_channels_latents, | |
| height, | |
| width, | |
| prompt_embeds.dtype, | |
| device, | |
| generator, | |
| latents, | |
| ) | |
| # 7. Prepare added time ids & embeddings | |
| add_text_embeds = pooled_prompt_embeds | |
| if self.text_encoder_2 is None: | |
| text_encoder_projection_dim = int(pooled_prompt_embeds.shape[-1]) | |
| else: | |
| text_encoder_projection_dim = self.text_encoder_2.config.projection_dim | |
| add_time_ids = self._get_add_time_ids( | |
| original_size, | |
| crops_coords_top_left, | |
| target_size, | |
| dtype=prompt_embeds.dtype, | |
| text_encoder_projection_dim=text_encoder_projection_dim, | |
| ) | |
| null_add_time_ids = add_time_ids.to(device) | |
| if negative_original_size is not None and negative_target_size is not None: | |
| negative_add_time_ids = self._get_add_time_ids( | |
| negative_original_size, | |
| negative_crops_coords_top_left, | |
| negative_target_size, | |
| dtype=prompt_embeds.dtype, | |
| text_encoder_projection_dim=text_encoder_projection_dim, | |
| ) | |
| else: | |
| negative_add_time_ids = add_time_ids | |
| if self.do_classifier_free_guidance: | |
| prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0) | |
| add_text_embeds = torch.cat( | |
| [negative_pooled_prompt_embeds, add_text_embeds], dim=0 | |
| ) | |
| add_time_ids = torch.cat([negative_add_time_ids, add_time_ids], dim=0) | |
| prompt_embeds = prompt_embeds.to(device) | |
| add_text_embeds = add_text_embeds.to(device) | |
| add_time_ids = add_time_ids.to(device).repeat( | |
| batch_size * num_images_per_prompt, 1 | |
| ) | |
| if ip_adapter_image is not None or ip_adapter_image_embeds is not None: | |
| image_embeds = self.prepare_ip_adapter_image_embeds( | |
| ip_adapter_image, | |
| ip_adapter_image_embeds, | |
| device, | |
| batch_size * num_images_per_prompt, | |
| self.do_classifier_free_guidance, | |
| ) | |
| # 8.1 Apply denoising_end | |
| if ( | |
| self.denoising_end is not None | |
| and isinstance(self.denoising_end, float) | |
| and self.denoising_end > 0 | |
| and self.denoising_end < 1 | |
| ): | |
| discrete_timestep_cutoff = int( | |
| round( | |
| self.scheduler.config.num_train_timesteps | |
| - (self.denoising_end * self.scheduler.config.num_train_timesteps) | |
| ) | |
| ) | |
| num_inference_steps = len( | |
| list(filter(lambda ts: ts >= discrete_timestep_cutoff, timesteps)) | |
| ) | |
| timesteps = timesteps[:num_inference_steps] | |
| # 9. Optionally get Guidance Scale Embedding | |
| timestep_cond = None | |
| if self.unet.config.time_cond_proj_dim is not None: | |
| guidance_scale_tensor = torch.tensor(self.guidance_scale - 1).repeat( | |
| batch_size * num_images_per_prompt | |
| ) | |
| timestep_cond = self.get_guidance_scale_embedding( | |
| guidance_scale_tensor, embedding_dim=self.unet.config.time_cond_proj_dim | |
| ).to(device=device, dtype=latents.dtype) | |
| self.timestep_cond = timestep_cond | |
| (null_embeds, _, null_pooled_embeds, _) = self.encode_prompt("", device=device) | |
| added_cond_kwargs = { | |
| "text_embeds": add_text_embeds, | |
| "time_ids": add_time_ids | |
| } | |
| if ip_adapter_image is not None or ip_adapter_image_embeds is not None: | |
| added_cond_kwargs["image_embeds"] = image_embeds | |
| self.scheduler.set_timesteps(num_inference_steps) | |
| timesteps = self.scheduler.timesteps | |
| style_latent = self.image2latent(style_image) | |
| if init_from_style: | |
| latents = torch.cat([style_latent] * latents.shape[0]) | |
| noise = torch.randn_like(latents) | |
| latents = self.scheduler.add_noise( | |
| latents, | |
| noise, | |
| torch.tensor([999]), | |
| ) | |
| self.style_latent = style_latent | |
| self.null_embeds_for_latents = torch.cat([null_embeds] * (latents.shape[0])) | |
| self.null_embeds_for_style = torch.cat([null_embeds] * style_latent.shape[0]) | |
| self.null_added_cond_kwargs_for_latents = { | |
| "text_embeds": torch.cat([null_pooled_embeds] * (latents.shape[0])), | |
| "time_ids": torch.cat([null_add_time_ids] * (latents.shape[0])), | |
| } | |
| self.null_added_cond_kwargs_for_style = { | |
| "text_embeds": torch.cat([null_pooled_embeds] * style_latent.shape[0]), | |
| "time_ids": torch.cat([null_add_time_ids] * style_latent.shape[0]), | |
| } | |
| self.adain = adain | |
| self.cache = utils.DataCache() | |
| self.controller = controller | |
| utils.register_attn_control( | |
| self.classifier, controller=controller, cache=self.cache | |
| ) | |
| print("Total self attention layers of Unet: ", controller.num_self_layers) | |
| print("Self attention layers for AD: ", controller.self_layers) | |
| pbar = tqdm(timesteps, desc="Sample") | |
| for i, t in enumerate(pbar): | |
| with torch.no_grad(): | |
| # expand the latents if we are doing classifier free guidance | |
| latent_model_input = ( | |
| torch.cat([latents] * 2) | |
| if self.do_classifier_free_guidance | |
| else latents | |
| ) | |
| # predict the noise residual | |
| noise_pred = self.unet( | |
| latent_model_input, | |
| t, | |
| encoder_hidden_states=prompt_embeds, | |
| timestep_cond=timestep_cond, | |
| cross_attention_kwargs=self.cross_attention_kwargs, | |
| added_cond_kwargs=added_cond_kwargs, | |
| return_dict=False, | |
| )[0] | |
| # perform guidance | |
| if self.do_classifier_free_guidance: | |
| noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) | |
| noise_pred = noise_pred_uncond + self.guidance_scale * ( | |
| noise_pred_text - noise_pred_uncond | |
| ) | |
| latents = self.scheduler.step(noise_pred, t, latents, return_dict=False)[0] | |
| if iters > 0 and t < start_time: | |
| latents = self.AD(latents, t, lr, iters, pbar) | |
| # Offload all models | |
| # self.enable_model_cpu_offload() | |
| images = self.latent2image(latents) | |
| self.maybe_free_model_hooks() | |
| return images | |
| def AD(self, latents, t, lr, iters, pbar): | |
| t = max( | |
| t | |
| - self.scheduler.config.num_train_timesteps | |
| // self.scheduler.num_inference_steps, | |
| torch.tensor([0], device=self.device), | |
| ) | |
| if self.adain: | |
| noise = torch.randn_like(self.style_latent) | |
| style_latent = self.scheduler.add_noise(self.style_latent, noise, t) | |
| latents = utils.adain(latents, style_latent) | |
| with torch.no_grad(): | |
| qs_list, ks_list, vs_list, s_out_list = self.extract_feature( | |
| self.style_latent, | |
| t, | |
| self.null_embeds_for_style, | |
| self.timestep_cond, | |
| self.null_added_cond_kwargs_for_style, | |
| add_noise=True, | |
| ) | |
| # latents = latents.to(dtype=torch.float32) | |
| latents = latents.detach() | |
| optimizer = torch.optim.Adam([latents.requires_grad_()], lr=lr) | |
| optimizer, latents = self.accelerator.prepare(optimizer, latents) | |
| for j in range(iters): | |
| optimizer.zero_grad() | |
| q_list, k_list, v_list, self_out_list = self.extract_feature( | |
| latents, | |
| t, | |
| self.null_embeds_for_latents, | |
| self.timestep_cond, | |
| self.null_added_cond_kwargs_for_latents, | |
| add_noise=False, | |
| ) | |
| loss = ad_loss(q_list, ks_list, vs_list, self_out_list) | |
| self.accelerator.backward(loss) | |
| optimizer.step() | |
| pbar.set_postfix(loss=loss.item(), time=t.item(), iter=j) | |
| latents = latents.detach() | |
| return latents | |
| def extract_feature( | |
| self, | |
| latent, | |
| t, | |
| encoder_hidden_states, | |
| timestep_cond, | |
| added_cond_kwargs, | |
| add_noise=False, | |
| ): | |
| self.cache.clear() | |
| self.controller.step() | |
| if add_noise: | |
| noise = torch.randn_like(latent) | |
| latent_ = self.scheduler.add_noise(latent, noise, t) | |
| else: | |
| latent_ = latent | |
| self.classifier( | |
| latent_, | |
| t, | |
| encoder_hidden_states=encoder_hidden_states, | |
| timestep_cond=timestep_cond, | |
| added_cond_kwargs=added_cond_kwargs, | |
| return_dict=False, | |
| )[0] | |
| return self.cache.get() | |