Spaces:
Build error
Build error
| import streamlit as st | |
| from PIL import Image | |
| import time | |
| from transformers import pipeline,AutoModelForCausalLM,AutoTokenizer | |
| from typing import Tuple | |
| from datasets import load_dataset | |
| import soundfile as sf | |
| import torch | |
| # Initialize image captioning pipeline with pretrained model | |
| # Model source: Hugging Face Model Hub | |
| _image_caption_pipeline = pipeline( | |
| task="image-to-text", | |
| model="noamrot/FuseCap_Image_Captioning" | |
| ) | |
| # Global model configuration constants | |
| _MODEL_NAME = "Qwen/Qwen3-1.7B" | |
| _THINKING_TOKEN_ID = 151668 # Special token marking thinking/content separation | |
| # Initialize model components once | |
| _tokenizer = AutoTokenizer.from_pretrained(_MODEL_NAME) | |
| _model = AutoModelForCausalLM.from_pretrained( | |
| _MODEL_NAME, | |
| torch_dtype="auto", | |
| device_map="auto" | |
| ) | |
| # Initialize TTS components once to avoid reloading | |
| _SPEECH_PIPELINE = pipeline("text-to-speech", model="microsoft/speecht5_tts") | |
| _EMBEDDINGS_DATASET = load_dataset("Matthijs/cmu-arctic-xvectors", split="validation") | |
| _DEFAULT_SPEAKER_EMBEDDING = torch.tensor(_EMBEDDINGS_DATASET[7306]["xvector"]).unsqueeze(0) | |
| def generate_image_caption(input_image): | |
| """ | |
| Generate a textual description for an input image using a pretrained model. | |
| Args: | |
| input_image (Union[PIL.Image.Image, str]): Image to process. Can be either: | |
| - A PIL Image object | |
| - A string containing a filesystem path to an image file | |
| Returns: | |
| str: Generated caption text in natural language | |
| Example: | |
| >>> from PIL import Image | |
| >>> img = Image.open("photo.jpg") | |
| >>> caption = generate_image_caption(img) | |
| >>> print(f"Caption: {caption}") | |
| """ | |
| # Process image through the captioning pipeline | |
| inference_results = _image_caption_pipeline(input_image) | |
| # Extract text from the first (and only) result dictionary | |
| caption_text = inference_results[0]['generated_text'] | |
| return caption_text | |
| def generate_story_content(system_prompt: str, user_prompt: str) -> str: | |
| """ | |
| Generates a children's story based on provided system and user prompts. | |
| Args: | |
| system_prompt: Defines the assistant's role and writing constraints | |
| user_prompt: Describes the story scenario and specific elements to include | |
| Returns: | |
| Generated story text without any thinking process metadata | |
| Raises: | |
| RuntimeError: If text generation fails at any stage | |
| Example: | |
| >>> story = generate_story_content( | |
| ... "You are a helpful children's author...", | |
| ... "Kids playing with dogs in a sunny meadow..." | |
| ... ) | |
| """ | |
| try: | |
| # Prepare chat message structure | |
| conversation_history = [ | |
| {"role": "system", "content": system_prompt}, | |
| {"role": "user", "content": user_prompt} | |
| ] | |
| # Format input using model-specific template | |
| formatted_input = _tokenizer.apply_chat_template( | |
| conversation_history, | |
| tokenize=False, | |
| add_generation_prompt=True, | |
| enable_thinking=False | |
| ) | |
| # Tokenize and prepare model inputs | |
| model_inputs = _tokenizer( | |
| [formatted_input], | |
| return_tensors="pt" | |
| ).to(_model.device) | |
| # Generate text completion | |
| generated_sequences = _model.generate( | |
| **model_inputs, | |
| max_new_tokens=1000 | |
| ) | |
| # Process and clean output | |
| return _process_generated_output( | |
| generated_sequences, | |
| model_inputs.input_ids | |
| ) | |
| except Exception as error: | |
| raise RuntimeError(f"Story generation failed: {str(error)}") from error | |
| def _process_generated_output(generated_sequences: list, input_ids: list) -> str: | |
| """ | |
| Processes raw model output to extract final content. | |
| Args: | |
| generated_sequences: Raw output sequences from model generation | |
| input_ids: Original input token IDs used for generation | |
| Returns: | |
| Cleaned final content text | |
| """ | |
| # Extract new tokens excluding original prompt | |
| new_tokens = generated_sequences[0][len(input_ids[0]):].tolist() | |
| # Find separation point between thinking and final content | |
| separation_index = _find_thinking_separation(new_tokens) | |
| # Decode and clean final content | |
| return _tokenizer.decode( | |
| new_tokens[separation_index:], | |
| skip_special_tokens=True | |
| ).strip("\n") | |
| def _find_thinking_separation(token_sequence: list) -> int: | |
| """ | |
| Locates the boundary between thinking process and final content. | |
| Args: | |
| token_sequence: List of generated token IDs | |
| Returns: | |
| Index position marking the start of final content | |
| """ | |
| try: | |
| # Search from end for separation token | |
| reverse_position = token_sequence[::-1].index(_THINKING_TOKEN_ID) | |
| return len(token_sequence) - reverse_position | |
| except ValueError: | |
| return 0 # Return start if token not found | |
| def generate_audio_from_story(story_text: str, output_path: str = "output.wav") -> str: | |
| """ | |
| Convert text story to speech audio file using text-to-speech synthesis. | |
| Args: | |
| story_text: Input story text to synthesize | |
| output_path: Path to save generated audio (default: 'output.wav') | |
| Returns: | |
| Path to generated audio file | |
| Raises: | |
| ValueError: For empty/invalid input text | |
| RuntimeError: If audio generation fails | |
| Example: | |
| >>> generate_audio_from_story("Children playing in the park", "story_audio.wav") | |
| 'story_audio.wav' | |
| """ | |
| # Validate input text | |
| if not isinstance(story_text, str) or not story_text.strip(): | |
| raise ValueError("Input story text must be a non-empty string") | |
| try: | |
| # Generate speech with default speaker profile | |
| speech_output = _SPEECH_PIPELINE( | |
| story_text, | |
| forward_params={"speaker_embeddings": _DEFAULT_SPEAKER_EMBEDDING} | |
| ) | |
| # Save audio to WAV file | |
| sf.write( | |
| output_path, | |
| speech_output["audio"], | |
| samplerate=speech_output["sampling_rate"] | |
| ) | |
| return output_path | |
| except Exception as error: | |
| raise RuntimeError(f"Audio synthesis failed: {str(error)}") from error | |
| # App title | |
| st.title("Best Story Teller") | |
| # Write some text | |
| st.write("Upload a picture and start your journey of creativeness and imagination") | |
| # File uploader for image and audio | |
| uploaded_image = st.file_uploader("Upload an image", type=["jpg", "jpeg", "png"]) | |
| uploaded_audio = st.file_uploader("Upload an audio file", type=["mp3", "wav", "ogg"]) | |
| # Display image with spinner | |
| if uploaded_image is not None: | |
| with st.spinner("Loading image..."): | |
| image = Image.open(uploaded_image) | |
| st.image(image, caption="Uploaded Image", use_column_width=True) | |
| with st.spinner("Captioning image..."): | |
| caption_from_file = generate_image_caption(image) | |
| with st.spinner("Adding some magics and imagination..."): | |
| system_prompt = "You are a helpful kid story writter. You should directly generate a simple, educational and intresting story no more than 150 words." | |
| user_prompt = caption_from_file | |
| story = generate_story_content(system_prompt, user_prompt) | |
| st.write(story) | |
| with st.spinner("Finding the best voice actor"): | |
| generated_audio = generate_audio_from_story(story,"childrens_story.wav") | |
| st.audio(generated_audio) |