Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
Commit
·
c7ac7fd
1
Parent(s):
7b01a99
feat: remove Discord link, add 16kHz audio resampling for fair comparison
Browse files- Remove Discord link and CSS styles from base.html
- Add audio resampling to 16kHz for all TTS outputs
- Convert MP3 outputs (ElevenLabs, CLOVA) to WAV
- Add scipy, numpy, pydub to requirements.txt
- Ensures fair audio quality comparison across providers
- requirements.txt +4 -1
- templates/base.html +0 -25
- tts.py +151 -7
requirements.txt
CHANGED
|
@@ -10,4 +10,7 @@ apscheduler
|
|
| 10 |
flask-migrate
|
| 11 |
gunicorn
|
| 12 |
waitress
|
| 13 |
-
huggingface-hub
|
|
|
|
|
|
|
|
|
|
|
|
| 10 |
flask-migrate
|
| 11 |
gunicorn
|
| 12 |
waitress
|
| 13 |
+
huggingface-hub
|
| 14 |
+
scipy
|
| 15 |
+
numpy
|
| 16 |
+
pydub
|
templates/base.html
CHANGED
|
@@ -388,24 +388,6 @@
|
|
| 388 |
margin-right: 12px;
|
| 389 |
}
|
| 390 |
|
| 391 |
-
.discord-link {
|
| 392 |
-
display: flex;
|
| 393 |
-
align-items: center;
|
| 394 |
-
padding: 12px 16px;
|
| 395 |
-
border-top: 1px solid var(--border-color);
|
| 396 |
-
text-decoration: none;
|
| 397 |
-
color: var(--text-color);
|
| 398 |
-
}
|
| 399 |
-
|
| 400 |
-
.discord-link:hover {
|
| 401 |
-
background-color: var(--light-gray);
|
| 402 |
-
color: #5865F2;
|
| 403 |
-
}
|
| 404 |
-
|
| 405 |
-
.discord-link svg {
|
| 406 |
-
margin-right: 12px;
|
| 407 |
-
}
|
| 408 |
-
|
| 409 |
.sidebar-footer {
|
| 410 |
margin-top: auto;
|
| 411 |
display: flex;
|
|
@@ -1126,13 +1108,6 @@
|
|
| 1126 |
</nav>
|
| 1127 |
|
| 1128 |
<div class="sidebar-footer">
|
| 1129 |
-
<a href="https://discord.gg/HB8fMR6GTr" target="_blank" rel="noopener noreferrer" class="discord-link">
|
| 1130 |
-
<svg xmlns="http://www.w3.org/2000/svg" width="24" height="24" viewBox="0 0 127.14 96.36" fill="currentColor">
|
| 1131 |
-
<path d="M107.7,8.07A105.15,105.15,0,0,0,81.47,0a72.06,72.06,0,0,0-3.36,6.83A97.68,97.68,0,0,0,49,6.83,72.37,72.37,0,0,0,45.64,0,105.89,105.89,0,0,0,19.39,8.09C2.79,32.65-1.71,56.6.54,80.21h0A105.73,105.73,0,0,0,32.71,96.36,77.7,77.7,0,0,0,39.6,85.25a68.42,68.42,0,0,1-10.85-5.18c.91-.66,1.8-1.34,2.66-2a75.57,75.57,0,0,0,64.32,0c.87.71,1.76,1.39,2.66,2a68.68,68.68,0,0,1-10.87,5.19,77,77,0,0,0,6.89,11.1A105.25,105.25,0,0,0,126.6,80.22h0C129.24,52.84,122.09,29.11,107.7,8.07ZM42.45,65.69C36.18,65.69,31,60,31,53s5-12.74,11.43-12.74S54,46,53.89,53,48.84,65.69,42.45,65.69Zm42.24,0C78.41,65.69,73.25,60,73.25,53s5-12.74,11.44-12.74S96.23,46,96.12,53,91.08,65.69,84.69,65.69Z"/>
|
| 1132 |
-
</svg>
|
| 1133 |
-
Join our Discord
|
| 1134 |
-
</a>
|
| 1135 |
-
|
| 1136 |
{% if current_user.is_authenticated %}
|
| 1137 |
<div class="user-auth" onclick="toggleUserDropdown(event)">
|
| 1138 |
<div class="user-name">{{ current_user.username }}</div>
|
|
|
|
| 388 |
margin-right: 12px;
|
| 389 |
}
|
| 390 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 391 |
.sidebar-footer {
|
| 392 |
margin-top: auto;
|
| 393 |
display: flex;
|
|
|
|
| 1108 |
</nav>
|
| 1109 |
|
| 1110 |
<div class="sidebar-footer">
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1111 |
{% if current_user.is_authenticated %}
|
| 1112 |
<div class="user-auth" onclick="toggleUserDropdown(event)">
|
| 1113 |
<div class="user-name">{{ current_user.username }}</div>
|
tts.py
CHANGED
|
@@ -6,10 +6,25 @@ import tempfile
|
|
| 6 |
import requests
|
| 7 |
import urllib.request
|
| 8 |
import urllib.parse
|
|
|
|
|
|
|
| 9 |
from dotenv import load_dotenv
|
| 10 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 11 |
load_dotenv()
|
| 12 |
|
|
|
|
|
|
|
|
|
|
| 13 |
# 한국어 지원 TTS 제공자 매핑
|
| 14 |
# - 채널톡: 자체 API
|
| 15 |
# - ElevenLabs: 직접 API
|
|
@@ -33,6 +48,116 @@ SUPERTONE_VOICE_ID = os.getenv("SUPERTONE_VOICE_ID", "91992bbd4758bdcf9c9b01")
|
|
| 33 |
CLOVA_CLIENT_ID = os.getenv("CLOVA_CLIENT_ID")
|
| 34 |
CLOVA_API_KEY = os.getenv("CLOVA_API_KEY")
|
| 35 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 36 |
model_mapping = {
|
| 37 |
# 채널톡 TTS (한국어 특화)
|
| 38 |
"channel-hana": {
|
|
@@ -265,7 +390,7 @@ def predict_tts(text: str, model: str) -> str:
|
|
| 265 |
model: 모델 ID (model_mapping의 키)
|
| 266 |
|
| 267 |
Returns:
|
| 268 |
-
생성된 오디오 파일 경로
|
| 269 |
"""
|
| 270 |
print(f"[TTS] Predicting for model: {model}")
|
| 271 |
|
|
@@ -274,31 +399,50 @@ def predict_tts(text: str, model: str) -> str:
|
|
| 274 |
|
| 275 |
config = model_mapping[model]
|
| 276 |
provider = config["provider"]
|
|
|
|
|
|
|
| 277 |
|
| 278 |
if provider == "channel":
|
| 279 |
-
|
|
|
|
| 280 |
|
| 281 |
elif provider == "openai":
|
| 282 |
-
|
| 283 |
text,
|
| 284 |
config.get("model", "gpt-4o-mini-tts"),
|
| 285 |
config.get("voice", "coral"),
|
| 286 |
)
|
|
|
|
| 287 |
|
| 288 |
elif provider == "google":
|
| 289 |
-
|
|
|
|
| 290 |
|
| 291 |
elif provider == "elevenlabs":
|
| 292 |
-
|
|
|
|
| 293 |
|
| 294 |
elif provider == "supertone":
|
| 295 |
-
|
|
|
|
| 296 |
|
| 297 |
elif provider == "clova":
|
| 298 |
-
|
|
|
|
| 299 |
|
| 300 |
else:
|
| 301 |
raise ValueError(f"알 수 없는 provider: {provider}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 302 |
|
| 303 |
|
| 304 |
if __name__ == "__main__":
|
|
|
|
| 6 |
import requests
|
| 7 |
import urllib.request
|
| 8 |
import urllib.parse
|
| 9 |
+
import wave
|
| 10 |
+
import struct
|
| 11 |
from dotenv import load_dotenv
|
| 12 |
|
| 13 |
+
# Optional: scipy for high-quality resampling
|
| 14 |
+
try:
|
| 15 |
+
from scipy import signal
|
| 16 |
+
from scipy.io import wavfile
|
| 17 |
+
import numpy as np
|
| 18 |
+
HAS_SCIPY = True
|
| 19 |
+
except ImportError:
|
| 20 |
+
HAS_SCIPY = False
|
| 21 |
+
print("Warning: scipy not installed. Using basic resampling.")
|
| 22 |
+
|
| 23 |
load_dotenv()
|
| 24 |
|
| 25 |
+
# Target sample rate for all TTS outputs (for fair comparison)
|
| 26 |
+
TARGET_SAMPLE_RATE = 16000
|
| 27 |
+
|
| 28 |
# 한국어 지원 TTS 제공자 매핑
|
| 29 |
# - 채널톡: 자체 API
|
| 30 |
# - ElevenLabs: 직접 API
|
|
|
|
| 48 |
CLOVA_CLIENT_ID = os.getenv("CLOVA_CLIENT_ID")
|
| 49 |
CLOVA_API_KEY = os.getenv("CLOVA_API_KEY")
|
| 50 |
|
| 51 |
+
def resample_wav_to_16khz(input_path: str) -> str:
|
| 52 |
+
"""
|
| 53 |
+
Resample a WAV file to 16kHz for fair comparison.
|
| 54 |
+
Returns the path to the resampled file.
|
| 55 |
+
"""
|
| 56 |
+
if not HAS_SCIPY:
|
| 57 |
+
# If scipy is not available, return original file
|
| 58 |
+
print(f"[Resample] scipy not available, skipping resample for {input_path}")
|
| 59 |
+
return input_path
|
| 60 |
+
|
| 61 |
+
try:
|
| 62 |
+
# Read the original WAV file
|
| 63 |
+
original_rate, data = wavfile.read(input_path)
|
| 64 |
+
|
| 65 |
+
# If already 16kHz, return as-is
|
| 66 |
+
if original_rate == TARGET_SAMPLE_RATE:
|
| 67 |
+
print(f"[Resample] Already {TARGET_SAMPLE_RATE}Hz, no resample needed")
|
| 68 |
+
return input_path
|
| 69 |
+
|
| 70 |
+
print(f"[Resample] Resampling from {original_rate}Hz to {TARGET_SAMPLE_RATE}Hz")
|
| 71 |
+
|
| 72 |
+
# Handle stereo to mono conversion if needed
|
| 73 |
+
if len(data.shape) > 1:
|
| 74 |
+
data = data.mean(axis=1).astype(data.dtype)
|
| 75 |
+
|
| 76 |
+
# Calculate the number of samples in the output
|
| 77 |
+
num_samples = int(len(data) * TARGET_SAMPLE_RATE / original_rate)
|
| 78 |
+
|
| 79 |
+
# Resample using scipy
|
| 80 |
+
resampled_data = signal.resample(data, num_samples)
|
| 81 |
+
|
| 82 |
+
# Normalize to int16 range
|
| 83 |
+
if resampled_data.dtype != np.int16:
|
| 84 |
+
# Normalize float to int16
|
| 85 |
+
max_val = np.max(np.abs(resampled_data))
|
| 86 |
+
if max_val > 0:
|
| 87 |
+
resampled_data = (resampled_data / max_val * 32767).astype(np.int16)
|
| 88 |
+
else:
|
| 89 |
+
resampled_data = resampled_data.astype(np.int16)
|
| 90 |
+
|
| 91 |
+
# Save to new temporary file
|
| 92 |
+
with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as f:
|
| 93 |
+
output_path = f.name
|
| 94 |
+
|
| 95 |
+
wavfile.write(output_path, TARGET_SAMPLE_RATE, resampled_data)
|
| 96 |
+
|
| 97 |
+
# Remove original file
|
| 98 |
+
os.remove(input_path)
|
| 99 |
+
|
| 100 |
+
print(f"[Resample] Successfully resampled to {output_path}")
|
| 101 |
+
return output_path
|
| 102 |
+
|
| 103 |
+
except Exception as e:
|
| 104 |
+
print(f"[Resample] Error resampling: {e}, returning original")
|
| 105 |
+
return input_path
|
| 106 |
+
|
| 107 |
+
|
| 108 |
+
def convert_mp3_to_wav_16khz(input_path: str) -> str:
|
| 109 |
+
"""
|
| 110 |
+
Convert MP3 to WAV at 16kHz using pydub (if available) or ffmpeg.
|
| 111 |
+
"""
|
| 112 |
+
try:
|
| 113 |
+
from pydub import AudioSegment
|
| 114 |
+
|
| 115 |
+
print(f"[Convert] Converting MP3 to WAV 16kHz: {input_path}")
|
| 116 |
+
|
| 117 |
+
# Load MP3
|
| 118 |
+
audio = AudioSegment.from_mp3(input_path)
|
| 119 |
+
|
| 120 |
+
# Convert to mono and set sample rate
|
| 121 |
+
audio = audio.set_channels(1).set_frame_rate(TARGET_SAMPLE_RATE)
|
| 122 |
+
|
| 123 |
+
# Export as WAV
|
| 124 |
+
with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as f:
|
| 125 |
+
output_path = f.name
|
| 126 |
+
|
| 127 |
+
audio.export(output_path, format="wav")
|
| 128 |
+
|
| 129 |
+
# Remove original MP3
|
| 130 |
+
os.remove(input_path)
|
| 131 |
+
|
| 132 |
+
print(f"[Convert] Successfully converted to {output_path}")
|
| 133 |
+
return output_path
|
| 134 |
+
|
| 135 |
+
except ImportError:
|
| 136 |
+
print("[Convert] pydub not available, trying ffmpeg directly")
|
| 137 |
+
try:
|
| 138 |
+
import subprocess
|
| 139 |
+
|
| 140 |
+
with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as f:
|
| 141 |
+
output_path = f.name
|
| 142 |
+
|
| 143 |
+
subprocess.run([
|
| 144 |
+
"ffmpeg", "-y", "-i", input_path,
|
| 145 |
+
"-ar", str(TARGET_SAMPLE_RATE),
|
| 146 |
+
"-ac", "1",
|
| 147 |
+
output_path
|
| 148 |
+
], check=True, capture_output=True)
|
| 149 |
+
|
| 150 |
+
os.remove(input_path)
|
| 151 |
+
return output_path
|
| 152 |
+
|
| 153 |
+
except Exception as e:
|
| 154 |
+
print(f"[Convert] ffmpeg conversion failed: {e}, returning original")
|
| 155 |
+
return input_path
|
| 156 |
+
except Exception as e:
|
| 157 |
+
print(f"[Convert] Error converting: {e}, returning original")
|
| 158 |
+
return input_path
|
| 159 |
+
|
| 160 |
+
|
| 161 |
model_mapping = {
|
| 162 |
# 채널톡 TTS (한국어 특화)
|
| 163 |
"channel-hana": {
|
|
|
|
| 390 |
model: 모델 ID (model_mapping의 키)
|
| 391 |
|
| 392 |
Returns:
|
| 393 |
+
생성된 오디오 파일 경로 (16kHz WAV로 통일)
|
| 394 |
"""
|
| 395 |
print(f"[TTS] Predicting for model: {model}")
|
| 396 |
|
|
|
|
| 399 |
|
| 400 |
config = model_mapping[model]
|
| 401 |
provider = config["provider"]
|
| 402 |
+
audio_path = None
|
| 403 |
+
is_mp3 = False
|
| 404 |
|
| 405 |
if provider == "channel":
|
| 406 |
+
audio_path = predict_channel_tts(text, config.get("voice", "hana"))
|
| 407 |
+
# Channel TTS returns WAV at 24kHz
|
| 408 |
|
| 409 |
elif provider == "openai":
|
| 410 |
+
audio_path = predict_openai_tts(
|
| 411 |
text,
|
| 412 |
config.get("model", "gpt-4o-mini-tts"),
|
| 413 |
config.get("voice", "coral"),
|
| 414 |
)
|
| 415 |
+
# OpenAI returns WAV
|
| 416 |
|
| 417 |
elif provider == "google":
|
| 418 |
+
audio_path = predict_google_tts(text, config.get("voice", "ko-KR-Wavenet-A"))
|
| 419 |
+
# Google returns WAV at 24kHz
|
| 420 |
|
| 421 |
elif provider == "elevenlabs":
|
| 422 |
+
audio_path = predict_elevenlabs_tts(text, config.get("model", "eleven_multilingual_v2"))
|
| 423 |
+
is_mp3 = True # ElevenLabs returns MP3
|
| 424 |
|
| 425 |
elif provider == "supertone":
|
| 426 |
+
audio_path = predict_supertone_tts(text, config.get("model", "sona_speech_1"))
|
| 427 |
+
# Supertone returns WAV
|
| 428 |
|
| 429 |
elif provider == "clova":
|
| 430 |
+
audio_path = predict_clova_tts(text, config.get("speaker", "nara"))
|
| 431 |
+
is_mp3 = True # CLOVA returns MP3
|
| 432 |
|
| 433 |
else:
|
| 434 |
raise ValueError(f"알 수 없는 provider: {provider}")
|
| 435 |
+
|
| 436 |
+
# Standardize to 16kHz WAV for fair comparison
|
| 437 |
+
if audio_path:
|
| 438 |
+
if is_mp3:
|
| 439 |
+
# Convert MP3 to WAV at 16kHz
|
| 440 |
+
audio_path = convert_mp3_to_wav_16khz(audio_path)
|
| 441 |
+
else:
|
| 442 |
+
# Resample WAV to 16kHz
|
| 443 |
+
audio_path = resample_wav_to_16khz(audio_path)
|
| 444 |
+
|
| 445 |
+
return audio_path
|
| 446 |
|
| 447 |
|
| 448 |
if __name__ == "__main__":
|