Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,768 +1,550 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
-
import
|
| 3 |
-
|
| 4 |
-
import
|
| 5 |
-
|
| 6 |
-
|
| 7 |
-
|
| 8 |
-
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
"""
|
| 37 |
-
|
| 38 |
-
"user_story": """
|
| 39 |
-
# User Story
|
| 40 |
-
|
| 41 |
-
**As a** {user_type}
|
| 42 |
-
**I want** {want}
|
| 43 |
-
**So that** {benefit}
|
| 44 |
-
|
| 45 |
-
## Acceptance Criteria
|
| 46 |
-
{acceptance_criteria}
|
| 47 |
-
|
| 48 |
-
## Definition of Done
|
| 49 |
-
{definition_of_done}
|
| 50 |
-
|
| 51 |
-
## Priority:** {priority}
|
| 52 |
-
**Story Points:** {story_points}
|
| 53 |
-
""",
|
| 54 |
-
|
| 55 |
-
"process_flow": """
|
| 56 |
-
# Business Process Flow
|
| 57 |
-
|
| 58 |
-
## Process Name: {process_name}
|
| 59 |
-
|
| 60 |
-
## Process Overview
|
| 61 |
-
{overview}
|
| 62 |
-
|
| 63 |
-
## Process Steps:
|
| 64 |
-
{steps}
|
| 65 |
-
|
| 66 |
-
## Stakeholders Involved:
|
| 67 |
-
{stakeholders}
|
| 68 |
-
|
| 69 |
-
## Systems/Tools Used:
|
| 70 |
-
{systems}
|
| 71 |
-
|
| 72 |
-
## Key Performance Indicators (KPIs):
|
| 73 |
-
{kpis}
|
| 74 |
-
|
| 75 |
-
## Process Improvements:
|
| 76 |
-
{improvements}
|
| 77 |
-
""",
|
| 78 |
-
|
| 79 |
-
"gap_analysis": """
|
| 80 |
-
# Gap Analysis Report
|
| 81 |
-
|
| 82 |
-
## Current State Analysis
|
| 83 |
-
{current_state}
|
| 84 |
-
|
| 85 |
-
## Future State Vision
|
| 86 |
-
{future_state}
|
| 87 |
-
|
| 88 |
-
## Identified Gaps
|
| 89 |
-
{gaps}
|
| 90 |
-
|
| 91 |
-
## Impact Assessment
|
| 92 |
-
{impact}
|
| 93 |
-
|
| 94 |
-
## Recommendations
|
| 95 |
-
{recommendations}
|
| 96 |
-
|
| 97 |
-
## Implementation Roadmap
|
| 98 |
-
{roadmap}
|
| 99 |
-
""",
|
| 100 |
-
|
| 101 |
-
"stakeholder_analysis": """
|
| 102 |
-
# Stakeholder Analysis
|
| 103 |
-
|
| 104 |
-
## Project: {project_name}
|
| 105 |
-
|
| 106 |
-
## Stakeholder Matrix
|
| 107 |
-
|
| 108 |
-
### High Influence, High Interest (Manage Closely)
|
| 109 |
-
{high_high}
|
| 110 |
-
|
| 111 |
-
### High Influence, Low Interest (Keep Satisfied)
|
| 112 |
-
{high_low}
|
| 113 |
-
|
| 114 |
-
### Low Influence, High Interest (Keep Informed)
|
| 115 |
-
{low_high}
|
| 116 |
-
|
| 117 |
-
### Low Influence, Low Interest (Monitor)
|
| 118 |
-
{low_low}
|
| 119 |
-
|
| 120 |
-
## Communication Plan
|
| 121 |
-
{communication_plan}
|
| 122 |
-
|
| 123 |
-
## Engagement Strategy
|
| 124 |
-
{engagement_strategy}
|
| 125 |
-
""",
|
| 126 |
-
|
| 127 |
-
"data_analysis": """
|
| 128 |
-
# Data Analysis Report
|
| 129 |
-
|
| 130 |
-
## Dataset Overview
|
| 131 |
-
**Dataset Name:** {dataset_name}
|
| 132 |
-
**Shape:** {shape}
|
| 133 |
-
**Upload Date:** {date}
|
| 134 |
-
|
| 135 |
-
## Column Analysis
|
| 136 |
-
{column_analysis}
|
| 137 |
-
|
| 138 |
-
## Machine Learning Model Recommendations
|
| 139 |
-
|
| 140 |
-
### 🤖 Suitable ML Models:
|
| 141 |
-
{ml_recommendations}
|
| 142 |
-
|
| 143 |
-
### 📊 Variable Identification:
|
| 144 |
-
**Potential Dependent Variables (Target):**
|
| 145 |
-
{dependent_vars}
|
| 146 |
-
|
| 147 |
-
**Potential Independent Variables (Features):**
|
| 148 |
-
{independent_vars}
|
| 149 |
-
|
| 150 |
-
### 📈 Data Visualization Recommendations:
|
| 151 |
-
{viz_recommendations}
|
| 152 |
|
| 153 |
-
##
|
| 154 |
-
{
|
|
|
|
|
|
|
| 155 |
|
| 156 |
-
##
|
| 157 |
-
{next_steps}
|
| 158 |
"""
|
| 159 |
-
|
| 160 |
-
|
| 161 |
-
|
| 162 |
-
|
| 163 |
-
|
| 164 |
-
|
| 165 |
-
|
| 166 |
-
|
| 167 |
-
|
| 168 |
-
|
| 169 |
-
|
| 170 |
-
|
| 171 |
-
|
| 172 |
-
|
| 173 |
-
|
| 174 |
-
|
| 175 |
-
|
| 176 |
-
|
| 177 |
-
|
| 178 |
-
|
| 179 |
-
|
| 180 |
-
|
| 181 |
-
|
| 182 |
-
|
| 183 |
-
|
| 184 |
-
|
| 185 |
-
|
| 186 |
-
|
| 187 |
-
|
| 188 |
-
|
| 189 |
-
|
| 190 |
-
# Variable identification
|
| 191 |
-
dependent_vars, independent_vars = identify_variables_simple(headers, data_rows)
|
| 192 |
-
|
| 193 |
-
# Visualization recommendations
|
| 194 |
-
viz_recommendations = recommend_visualizations_simple(headers, data_rows)
|
| 195 |
-
|
| 196 |
-
# Data quality assessment
|
| 197 |
-
data_quality = assess_data_quality_simple(headers, data_rows)
|
| 198 |
-
|
| 199 |
-
# Next steps
|
| 200 |
-
next_steps = generate_next_steps_simple()
|
| 201 |
-
|
| 202 |
-
# Generate report
|
| 203 |
-
template = BA_TEMPLATES["data_analysis"]
|
| 204 |
-
return template.format(
|
| 205 |
-
dataset_name=dataset_name,
|
| 206 |
-
shape=shape,
|
| 207 |
-
date=datetime.now().strftime("%Y-%m-%d"),
|
| 208 |
-
column_analysis=column_analysis,
|
| 209 |
-
ml_recommendations=ml_recommendations,
|
| 210 |
-
dependent_vars=dependent_vars,
|
| 211 |
-
independent_vars=independent_vars,
|
| 212 |
-
viz_recommendations=viz_recommendations,
|
| 213 |
-
data_quality=data_quality,
|
| 214 |
-
next_steps=next_steps
|
| 215 |
-
)
|
| 216 |
-
|
| 217 |
-
except Exception as e:
|
| 218 |
-
return f"Error analyzing dataset: {str(e)}. Please ensure your file is a valid CSV format."
|
| 219 |
-
|
| 220 |
-
def analyze_columns_simple(headers, data_rows):
|
| 221 |
-
"""Simple column analysis without pandas"""
|
| 222 |
-
analysis = []
|
| 223 |
|
| 224 |
-
|
| 225 |
-
|
| 226 |
-
|
| 227 |
-
|
| 228 |
-
|
| 229 |
-
|
| 230 |
-
|
| 231 |
-
|
| 232 |
-
|
| 233 |
-
|
| 234 |
-
|
| 235 |
-
|
| 236 |
-
|
| 237 |
-
#
|
| 238 |
-
|
| 239 |
-
|
| 240 |
-
|
| 241 |
-
|
| 242 |
-
|
| 243 |
-
|
| 244 |
-
|
| 245 |
-
|
| 246 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 247 |
else:
|
| 248 |
-
|
| 249 |
-
common_values = list(set(non_empty_values[:10]))[:3]
|
| 250 |
-
stats = f"Sample values: {common_values}"
|
| 251 |
|
| 252 |
-
|
| 253 |
|
| 254 |
-
|
| 255 |
-
|
| 256 |
-
|
| 257 |
-
|
| 258 |
-
|
| 259 |
-
|
| 260 |
-
|
| 261 |
-
|
| 262 |
-
|
| 263 |
-
|
| 264 |
-
|
| 265 |
-
|
| 266 |
-
|
| 267 |
-
|
| 268 |
-
|
| 269 |
-
|
| 270 |
-
|
| 271 |
-
|
| 272 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 273 |
|
| 274 |
-
|
| 275 |
-
|
| 276 |
-
|
| 277 |
-
|
| 278 |
-
|
| 279 |
-
|
| 280 |
-
|
| 281 |
-
|
| 282 |
-
|
| 283 |
-
|
| 284 |
-
|
| 285 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 286 |
else:
|
| 287 |
-
|
| 288 |
-
|
| 289 |
-
|
| 290 |
-
|
| 291 |
-
|
| 292 |
-
|
| 293 |
-
recommendations.append("""
|
| 294 |
-
**🎯 Classification Models** (Suitable for predicting categories)
|
| 295 |
-
• **Logistic Regression** - Good for binary classification, interpretable results
|
| 296 |
-
• **Random Forest** - Handles mixed data types well, provides feature importance
|
| 297 |
-
• **Decision Tree** - Easy to interpret, good for creating business rules
|
| 298 |
-
• **Support Vector Machine (SVM)** - Effective for high-dimensional data
|
| 299 |
-
• **Gradient Boosting (XGBoost)** - High accuracy, handles missing values well
|
| 300 |
-
• **Neural Networks** - For complex patterns (recommended if dataset > 1000 rows)
|
| 301 |
-
|
| 302 |
-
*Best for: Predicting categories like Yes/No, High/Medium/Low, Customer segments*""")
|
| 303 |
-
|
| 304 |
-
# Regression models recommendation
|
| 305 |
-
if numerical_cols:
|
| 306 |
-
recommendations.append("""
|
| 307 |
-
**📈 Regression Models** (Suitable for predicting continuous values)
|
| 308 |
-
• **Linear Regression** - Simple, interpretable, good as baseline model
|
| 309 |
-
• **Polynomial Regression** - For capturing non-linear relationships
|
| 310 |
-
• **Random Forest Regressor** - Robust to outliers, handles mixed data types
|
| 311 |
-
• **Ridge/Lasso Regression** - Good for high-dimensional data, prevents overfitting
|
| 312 |
-
• **Gradient Boosting Regressor** - High accuracy for complex patterns
|
| 313 |
-
• **Neural Networks** - For complex non-linear relationships
|
| 314 |
-
|
| 315 |
-
*Best for: Predicting prices, quantities, scores, measurements, forecasts*""")
|
| 316 |
-
|
| 317 |
-
# Clustering models
|
| 318 |
-
if total_rows > 50:
|
| 319 |
-
recommendations.append("""
|
| 320 |
-
**🔍 Clustering Models** (Suitable for finding hidden patterns)
|
| 321 |
-
• **K-Means Clustering** - Good for customer segmentation, market analysis
|
| 322 |
-
• **Hierarchical Clustering** - Creates tree-like cluster structure
|
| 323 |
-
• **DBSCAN** - Finds clusters of varying shapes and sizes, handles noise
|
| 324 |
-
|
| 325 |
-
*Best for: Customer segmentation, market analysis, pattern discovery*""")
|
| 326 |
-
|
| 327 |
-
# Time series recommendation
|
| 328 |
-
date_keywords = ['date', 'time', 'year', 'month', 'day', 'timestamp']
|
| 329 |
-
has_date_column = any(keyword in col.lower() for col in headers for keyword in date_keywords)
|
| 330 |
-
|
| 331 |
-
if has_date_column:
|
| 332 |
-
recommendations.append("""
|
| 333 |
-
**⏰ Time Series Models** (Suitable for temporal data)
|
| 334 |
-
• **ARIMA** - Classical time series forecasting
|
| 335 |
-
• **Prophet** - Good for seasonal patterns and holidays
|
| 336 |
-
• **LSTM Neural Networks** - For complex temporal patterns
|
| 337 |
-
• **Exponential Smoothing** - Simple but effective for trends
|
| 338 |
-
|
| 339 |
-
*Best for: Sales forecasting, demand prediction, trend analysis*""")
|
| 340 |
-
|
| 341 |
-
# Dataset size considerations
|
| 342 |
-
if total_rows < 100:
|
| 343 |
-
recommendations.append("""
|
| 344 |
-
**⚠️ Dataset Size Consideration:**
|
| 345 |
-
Your dataset is small (< 100 rows). Consider:
|
| 346 |
-
• Simple models like Linear/Logistic Regression
|
| 347 |
-
• Decision Trees with limited depth to avoid overfitting
|
| 348 |
-
• Collecting more data for better model performance
|
| 349 |
-
• Cross-validation for reliable performance estimates""")
|
| 350 |
-
elif total_rows > 10000:
|
| 351 |
-
recommendations.append("""
|
| 352 |
-
**🚀 Large Dataset Advantages:**
|
| 353 |
-
Your dataset is large (> 10,000 rows). You can use:
|
| 354 |
-
• Complex models like Neural Networks and Deep Learning
|
| 355 |
-
• Ensemble methods for higher accuracy
|
| 356 |
-
• Advanced feature engineering techniques
|
| 357 |
-
• Multiple model comparison and stacking""")
|
| 358 |
-
|
| 359 |
-
return "\n".join(recommendations) if recommendations else "Unable to determine suitable models. Please check your dataset format."
|
| 360 |
-
|
| 361 |
-
def identify_variables_simple(headers, data_rows):
|
| 362 |
-
"""Simple variable identification"""
|
| 363 |
-
dependent_candidates = []
|
| 364 |
-
independent_candidates = []
|
| 365 |
-
|
| 366 |
-
# Look for potential target variables
|
| 367 |
-
target_keywords = ['target', 'label', 'class', 'outcome', 'result', 'prediction', 'y']
|
| 368 |
-
|
| 369 |
-
for col in headers:
|
| 370 |
-
col_lower = col.lower()
|
| 371 |
-
|
| 372 |
-
# Check if column name suggests it's a target
|
| 373 |
-
if any(keyword in col_lower for keyword in target_keywords):
|
| 374 |
-
dependent_candidates.append(f"• **{col}** - Column name suggests this is a target variable")
|
| 375 |
-
continue
|
| 376 |
-
|
| 377 |
-
# Sample values to determine if categorical with few categories
|
| 378 |
-
sample_values = []
|
| 379 |
-
for row in data_rows[:100]:
|
| 380 |
-
row_data = [cell.strip().strip('"') for cell in row.split(',')]
|
| 381 |
-
col_idx = headers.index(col)
|
| 382 |
-
if col_idx < len(row_data) and row_data[col_idx]:
|
| 383 |
-
sample_values.append(row_data[col_idx])
|
| 384 |
-
|
| 385 |
-
unique_values = len(set(sample_values))
|
| 386 |
-
|
| 387 |
-
# Potential categorical target (few unique values)
|
| 388 |
-
if unique_values <= 10 and len(sample_values) > 0:
|
| 389 |
-
sample_unique = list(set(sample_values))[:5]
|
| 390 |
-
dependent_candidates.append(f"• **{col}** - Categorical with {unique_values} categories: {sample_unique}")
|
| 391 |
-
# Potential numerical target
|
| 392 |
-
elif is_number(sample_values[0]) if sample_values else False:
|
| 393 |
-
if any(keyword in col_lower for keyword in ['price', 'amount', 'score', 'rating', 'value']):
|
| 394 |
-
dependent_candidates.append(f"• **{col}** - Numerical variable suitable for regression")
|
| 395 |
-
|
| 396 |
-
# All other columns as independent variables
|
| 397 |
-
dep_var_names = [line.split('**')[1].split('**')[0] for line in dependent_candidates]
|
| 398 |
-
|
| 399 |
-
for col in headers:
|
| 400 |
-
if col not in dep_var_names:
|
| 401 |
-
# Determine type
|
| 402 |
-
sample_values = []
|
| 403 |
-
for row in data_rows[:50]:
|
| 404 |
-
row_data = [cell.strip().strip('"') for cell in row.split(',')]
|
| 405 |
-
col_idx = headers.index(col)
|
| 406 |
-
if col_idx < len(row_data) and row_data[col_idx]:
|
| 407 |
-
sample_values.append(row_data[col_idx])
|
| 408 |
|
| 409 |
-
|
| 410 |
-
|
| 411 |
-
|
| 412 |
-
|
| 413 |
-
|
| 414 |
-
|
| 415 |
-
|
| 416 |
-
|
| 417 |
-
|
| 418 |
-
indep_vars = "\n".join(independent_candidates[:15]) if independent_candidates else "• All columns can potentially serve as features."
|
| 419 |
-
if len(independent_candidates) > 15:
|
| 420 |
-
indep_vars += f"\n• ... and {len(independent_candidates) - 15} more variables"
|
| 421 |
-
|
| 422 |
-
return dep_vars, indep_vars
|
| 423 |
-
|
| 424 |
-
def recommend_visualizations_simple(headers, data_rows):
|
| 425 |
-
"""Simple visualization recommendations"""
|
| 426 |
-
viz_recommendations = []
|
| 427 |
-
|
| 428 |
-
# Analyze column types
|
| 429 |
-
numerical_cols = []
|
| 430 |
-
categorical_cols = []
|
| 431 |
-
|
| 432 |
-
for col in headers:
|
| 433 |
-
# Sample values to determine type
|
| 434 |
-
sample_values = []
|
| 435 |
-
for row in data_rows[:50]:
|
| 436 |
-
row_data = [cell.strip().strip('"') for cell in row.split(',')]
|
| 437 |
-
col_idx = headers.index(col)
|
| 438 |
-
if col_idx < len(row_data) and row_data[col_idx]:
|
| 439 |
-
sample_values.append(row_data[col_idx])
|
| 440 |
-
|
| 441 |
-
if sample_values:
|
| 442 |
-
numeric_count = sum(1 for v in sample_values if is_number(v))
|
| 443 |
-
if numeric_count > len(sample_values) * 0.7:
|
| 444 |
-
numerical_cols.append(col)
|
| 445 |
-
else:
|
| 446 |
-
categorical_cols.append(col)
|
| 447 |
-
|
| 448 |
-
# Recommendations for numerical variables
|
| 449 |
-
if numerical_cols:
|
| 450 |
-
viz_recommendations.append("**📊 For Numerical Variables:**")
|
| 451 |
-
for col in numerical_cols[:5]: # Limit to first 5
|
| 452 |
-
viz_recommendations.append(f"""
|
| 453 |
-
• **{col}**:
|
| 454 |
-
- **Histogram** - Show distribution pattern and identify outliers
|
| 455 |
-
- **Box Plot** - Visualize quartiles, median, and outliers
|
| 456 |
-
- **Line Chart** - Show trends over time (if sequential data)
|
| 457 |
-
- **Scatter Plot** vs other numerical variables - Find correlations""")
|
| 458 |
-
|
| 459 |
-
# Recommendations for categorical variables
|
| 460 |
-
if categorical_cols:
|
| 461 |
-
viz_recommendations.append("\n**📈 For Categorical Variables:**")
|
| 462 |
-
for col in categorical_cols[:5]: # Limit to first 5
|
| 463 |
-
# Count unique values
|
| 464 |
-
sample_values = []
|
| 465 |
-
for row in data_rows[:100]:
|
| 466 |
-
row_data = [cell.strip().strip('"') for cell in row.split(',')]
|
| 467 |
-
col_idx = headers.index(col)
|
| 468 |
-
if col_idx < len(row_data) and row_data[col_idx]:
|
| 469 |
-
sample_values.append(row_data[col_idx])
|
| 470 |
|
| 471 |
-
|
| 472 |
-
|
| 473 |
-
|
| 474 |
-
|
| 475 |
-
|
| 476 |
-
|
| 477 |
-
|
| 478 |
-
|
| 479 |
-
|
| 480 |
-
|
| 481 |
-
|
| 482 |
-
|
| 483 |
-
|
| 484 |
-
|
| 485 |
-
|
| 486 |
-
|
| 487 |
-
|
| 488 |
-
|
| 489 |
-
|
| 490 |
-
|
| 491 |
-
|
| 492 |
-
|
| 493 |
-
|
| 494 |
-
|
| 495 |
-
|
| 496 |
-
|
| 497 |
-
|
| 498 |
-
|
| 499 |
-
|
| 500 |
-
|
| 501 |
-
|
| 502 |
-
|
| 503 |
-
|
| 504 |
-
|
| 505 |
-
|
| 506 |
-
|
| 507 |
-
|
| 508 |
-
|
| 509 |
-
|
| 510 |
-
|
| 511 |
-
|
| 512 |
-
|
| 513 |
-
|
| 514 |
-
|
| 515 |
-
"""Simple data quality assessment"""
|
| 516 |
-
quality_issues = []
|
| 517 |
-
|
| 518 |
-
# Check for missing values
|
| 519 |
-
missing_analysis = []
|
| 520 |
-
for col in headers:
|
| 521 |
-
col_idx = headers.index(col)
|
| 522 |
-
missing_count = 0
|
| 523 |
-
total_count = 0
|
| 524 |
-
|
| 525 |
-
for row in data_rows:
|
| 526 |
-
row_data = [cell.strip().strip('"') for cell in row.split(',')]
|
| 527 |
-
total_count += 1
|
| 528 |
-
if col_idx >= len(row_data) or not row_data[col_idx] or row_data[col_idx] == '':
|
| 529 |
-
missing_count += 1
|
| 530 |
-
|
| 531 |
-
if missing_count > 0:
|
| 532 |
-
missing_pct = round((missing_count / total_count) * 100, 1)
|
| 533 |
-
missing_analysis.append(f" - {col}: {missing_pct}% missing ({missing_count}/{total_count})")
|
| 534 |
-
|
| 535 |
-
if missing_analysis:
|
| 536 |
-
quality_issues.append("**Missing Values Detected:**")
|
| 537 |
-
quality_issues.extend(missing_analysis[:5]) # Show first 5
|
| 538 |
-
if len(missing_analysis) > 5:
|
| 539 |
-
quality_issues.append(f" - ... and {len(missing_analysis) - 5} more columns with missing data")
|
| 540 |
-
|
| 541 |
-
# Check for potential duplicates (simple check)
|
| 542 |
-
unique_rows = set()
|
| 543 |
-
duplicate_count = 0
|
| 544 |
-
for row in data_rows[:1000]: # Check first 1000 rows
|
| 545 |
-
if row in unique_rows:
|
| 546 |
-
duplicate_count += 1
|
| 547 |
-
else:
|
| 548 |
-
unique_rows.add(row)
|
| 549 |
-
|
| 550 |
-
if duplicate_count > 0:
|
| 551 |
-
quality_issues.append(f"**Potential Duplicate Rows:** {duplicate_count} duplicate rows detected in sample")
|
| 552 |
-
|
| 553 |
-
# Check for inconsistent data formats
|
| 554 |
-
format_issues = []
|
| 555 |
-
for col in headers[:5]: # Check first 5 columns
|
| 556 |
-
col_idx = headers.index(col)
|
| 557 |
-
values = []
|
| 558 |
-
for row in data_rows[:100]:
|
| 559 |
-
row_data = [cell.strip().strip('"') for cell in row.split(',')]
|
| 560 |
-
if col_idx < len(row_data) and row_data[col_idx]:
|
| 561 |
-
values.append(row_data[col_idx])
|
| 562 |
-
|
| 563 |
-
if values:
|
| 564 |
-
# Check for mixed numeric/text in same column
|
| 565 |
-
numeric_count = sum(1 for v in values if is_number(v))
|
| 566 |
-
if 0 < numeric_count < len(values):
|
| 567 |
-
format_issues.append(f" - {col}: Mixed data types (numeric and text)")
|
| 568 |
-
|
| 569 |
-
if format_issues:
|
| 570 |
-
quality_issues.append("**Data Format Issues:**")
|
| 571 |
-
quality_issues.extend(format_issues)
|
| 572 |
-
|
| 573 |
-
# Overall assessment
|
| 574 |
-
if not quality_issues:
|
| 575 |
-
return "✅ **Good Data Quality:** No major data quality issues detected in the sample."
|
| 576 |
-
else:
|
| 577 |
-
quality_issues.insert(0, "⚠️ **Data Quality Issues Found:**")
|
| 578 |
-
quality_issues.append("\n**Recommendations:**")
|
| 579 |
-
quality_issues.append("• Clean missing values before model training")
|
| 580 |
-
quality_issues.append("• Remove or handle duplicate records")
|
| 581 |
-
quality_issues.append("• Standardize data formats within columns")
|
| 582 |
-
quality_issues.append("• Validate data types and convert as needed")
|
| 583 |
|
| 584 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 585 |
|
| 586 |
-
|
| 587 |
-
"""Generate recommended next steps"""
|
| 588 |
-
steps = [
|
| 589 |
-
"1. **Data Cleaning:** Handle missing values, duplicates, and outliers",
|
| 590 |
-
"2. **Data Exploration:** Create visualizations to understand patterns and relationships",
|
| 591 |
-
"3. **Feature Engineering:** Create new variables from existing ones if needed",
|
| 592 |
-
"4. **Variable Selection:** Choose the most relevant features for your model",
|
| 593 |
-
"5. **Model Selection:** Pick appropriate ML model based on recommendations above",
|
| 594 |
-
"6. **Data Splitting:** Divide data into training and testing sets (80/20 split)",
|
| 595 |
-
"7. **Model Training:** Train your selected model with the training data",
|
| 596 |
-
"8. **Model Evaluation:** Test model performance using appropriate metrics",
|
| 597 |
-
"9. **Model Tuning:** Optimize hyperparameters for better performance",
|
| 598 |
-
"10. **Model Deployment:** Implement the model for business use"
|
| 599 |
-
]
|
| 600 |
-
|
| 601 |
-
return "\n".join(steps)
|
| 602 |
|
| 603 |
-
|
| 604 |
-
|
| 605 |
-
|
| 606 |
-
|
| 607 |
-
|
| 608 |
-
|
| 609 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 610 |
else:
|
| 611 |
-
|
| 612 |
-
|
| 613 |
-
|
| 614 |
-
|
| 615 |
-
|
| 616 |
-
|
| 617 |
-
|
| 618 |
-
|
| 619 |
-
|
| 620 |
-
|
| 621 |
-
|
| 622 |
-
|
| 623 |
-
|
| 624 |
-
|
| 625 |
-
|
| 626 |
-
|
| 627 |
-
if doc_type == "requirements":
|
| 628 |
-
return generate_requirements_doc(context, user_input)
|
| 629 |
-
elif doc_type == "user_story":
|
| 630 |
-
return generate_user_story(context, user_input)
|
| 631 |
-
elif doc_type == "process_flow":
|
| 632 |
-
return generate_process_flow(context, user_input)
|
| 633 |
-
elif doc_type == "gap_analysis":
|
| 634 |
-
return generate_gap_analysis(context, user_input)
|
| 635 |
-
elif doc_type == "stakeholder_analysis":
|
| 636 |
-
return generate_stakeholder_analysis(context, user_input)
|
| 637 |
-
else:
|
| 638 |
-
return "Please select a valid document type."
|
| 639 |
-
|
| 640 |
-
def generate_requirements_doc(context, user_input):
|
| 641 |
-
"""Generate Business Requirements Document"""
|
| 642 |
-
|
| 643 |
-
# Default values if not provided
|
| 644 |
-
project_name = context.get('project_name', context.get('project', 'New Project'))
|
| 645 |
-
|
| 646 |
-
# Generate content based on input
|
| 647 |
-
if 'objective' in user_input.lower() or 'goal' in user_input.lower():
|
| 648 |
-
objectives = extract_objectives(user_input)
|
| 649 |
-
else:
|
| 650 |
-
objectives = "• Improve business efficiency\n• Enhance user experience\n• Reduce operational costs"
|
| 651 |
-
|
| 652 |
-
if 'requirement' in user_input.lower():
|
| 653 |
-
functional_requirements = extract_requirements(user_input)
|
| 654 |
-
else:
|
| 655 |
-
functional_requirements = "• System shall allow users to [specific functionality]\n• System shall provide [specific feature]\n• System shall integrate with [existing systems]"
|
| 656 |
-
|
| 657 |
-
template = BA_TEMPLATES["requirements"]
|
| 658 |
-
return template.format(
|
| 659 |
-
project_name=project_name,
|
| 660 |
-
date=context['date'],
|
| 661 |
-
analyst_name=context['analyst_name'],
|
| 662 |
-
executive_summary=context.get('summary', 'This document outlines the business requirements for ' + project_name),
|
| 663 |
-
objectives=objectives,
|
| 664 |
-
functional_requirements=functional_requirements,
|
| 665 |
-
non_functional_requirements="• Performance: Response time < 2 seconds\n• Security: Role-based access control\n• Scalability: Support 1000+ concurrent users",
|
| 666 |
-
acceptance_criteria="• All functional requirements implemented\n• User acceptance testing completed\n• Performance benchmarks met",
|
| 667 |
-
assumptions="• Users have basic computer literacy\n• Integration APIs are available\n• Project timeline is 6 months",
|
| 668 |
-
risks="• Technical complexity may cause delays\n• User adoption challenges\n• Budget constraints"
|
| 669 |
-
)
|
| 670 |
-
|
| 671 |
-
def generate_user_story(context, user_input):
|
| 672 |
-
"""Generate User Story"""
|
| 673 |
-
|
| 674 |
-
# Extract user story components
|
| 675 |
-
user_type = context.get('user_type', context.get('as_a', 'end user'))
|
| 676 |
-
want = context.get('want', context.get('i_want', 'perform a specific action'))
|
| 677 |
-
benefit = context.get('benefit', context.get('so_that', 'achieve my goal efficiently'))
|
| 678 |
-
|
| 679 |
-
template = BA_TEMPLATES["user_story"]
|
| 680 |
-
return template.format(
|
| 681 |
-
user_type=user_type,
|
| 682 |
-
want=want,
|
| 683 |
-
benefit=benefit,
|
| 684 |
-
acceptance_criteria="• Given [precondition]\n• When [action]\n• Then [expected result]",
|
| 685 |
-
definition_of_done="• Code reviewed and approved\n• Unit tests written and passing\n• Documentation updated\n• Deployed to staging environment",
|
| 686 |
-
priority=context.get('priority', 'Medium'),
|
| 687 |
-
story_points=context.get('story_points', 'TBD')
|
| 688 |
-
)
|
| 689 |
-
|
| 690 |
-
def generate_process_flow(context, user_input):
|
| 691 |
-
"""Generate Process Flow Document"""
|
| 692 |
-
|
| 693 |
-
process_name = context.get('process_name', context.get('process', 'Business Process'))
|
| 694 |
-
|
| 695 |
-
template = BA_TEMPLATES["process_flow"]
|
| 696 |
-
return template.format(
|
| 697 |
-
process_name=process_name,
|
| 698 |
-
overview=context.get('overview', f'This document describes the {process_name} workflow and procedures.'),
|
| 699 |
-
steps="1. Process initiation\n2. Data collection\n3. Analysis and review\n4. Decision making\n5. Implementation\n6. Monitoring and feedback",
|
| 700 |
-
stakeholders="• Business Users\n• Process Owners\n• IT Support\n• Management",
|
| 701 |
-
systems="• CRM System\n• ERP System\n• Document Management\n• Reporting Tools",
|
| 702 |
-
kpis="• Process completion time\n• Error rate\n• Customer satisfaction\n• Cost per transaction",
|
| 703 |
-
improvements="• Automation opportunities\n• Bottleneck elimination\n• Quality enhancements\n• Cost reduction initiatives"
|
| 704 |
-
)
|
| 705 |
-
|
| 706 |
-
def generate_gap_analysis(context, user_input):
|
| 707 |
-
"""Generate Gap Analysis Report"""
|
| 708 |
|
| 709 |
-
|
| 710 |
-
|
| 711 |
-
|
| 712 |
-
|
| 713 |
-
|
| 714 |
-
|
| 715 |
-
|
| 716 |
-
|
| 717 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 718 |
|
| 719 |
-
|
| 720 |
-
|
| 721 |
-
|
| 722 |
-
project_name = context.get('project_name', context.get('project', 'Current Project'))
|
| 723 |
-
|
| 724 |
-
template = BA_TEMPLATES["stakeholder_analysis"]
|
| 725 |
-
return template.format(
|
| 726 |
-
project_name=project_name,
|
| 727 |
-
high_high="• Executive Sponsor\n• Project Manager\n• Key Business Users",
|
| 728 |
-
high_low="• Senior Management\n• Department Heads\n• Regulatory Bodies",
|
| 729 |
-
low_high="• End Users\n• Customer Representatives\n• Support Teams",
|
| 730 |
-
low_low="• Vendors\n• External Consultants\n• Peripheral Teams",
|
| 731 |
-
communication_plan="• Weekly status reports\n• Monthly steering committee meetings\n• Quarterly business reviews",
|
| 732 |
-
engagement_strategy="• Regular one-on-one meetings\n• Focus groups and workshops\n• Change management activities"
|
| 733 |
-
)
|
| 734 |
|
| 735 |
-
|
| 736 |
-
|
| 737 |
-
|
| 738 |
-
lines = text.split('\n')
|
| 739 |
-
for line in lines:
|
| 740 |
-
if any(keyword in line.lower() for keyword in ['objective', 'goal', 'aim', 'target']):
|
| 741 |
-
objectives.append(f"• {line.strip()}")
|
| 742 |
-
|
| 743 |
-
if not objectives:
|
| 744 |
-
return "• Improve business efficiency\n• Enhance user experience\n• Reduce operational costs"
|
| 745 |
-
|
| 746 |
-
return '\n'.join(objectives)
|
| 747 |
|
| 748 |
-
def
|
| 749 |
-
|
| 750 |
-
requirements = []
|
| 751 |
-
lines = text.split('\n')
|
| 752 |
-
for line in lines:
|
| 753 |
-
if any(keyword in line.lower() for keyword in ['requirement', 'must', 'shall', 'should', 'need']):
|
| 754 |
-
requirements.append(f"• {line.strip()}")
|
| 755 |
-
|
| 756 |
-
if not requirements:
|
| 757 |
-
return "• System shall provide core functionality\n• System shall integrate with existing tools\n• System shall meet performance standards"
|
| 758 |
-
|
| 759 |
-
return '\n'.join(requirements)
|
| 760 |
|
| 761 |
-
def
|
| 762 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 763 |
|
| 764 |
-
|
| 765 |
-
"
|
| 766 |
-
|
| 767 |
-
|
| 768 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
+
import pandas as pd
|
| 3 |
+
import numpy as np
|
| 4 |
+
from sklearn.model_selection import train_test_split
|
| 5 |
+
from sklearn.ensemble import RandomForestClassifier, RandomForestRegressor
|
| 6 |
+
from sklearn.linear_model import LinearRegression, LogisticRegression
|
| 7 |
+
from sklearn.svm import SVC, SVR
|
| 8 |
+
from sklearn.tree import DecisionTreeClassifier, DecisionTreeRegressor
|
| 9 |
+
from sklearn.naive_bayes import GaussianNB
|
| 10 |
+
from sklearn.neighbors import KNeighborsClassifier, KNeighborsRegressor
|
| 11 |
+
from sklearn.metrics import accuracy_score, r2_score, mean_squared_error
|
| 12 |
+
import matplotlib.pyplot as plt
|
| 13 |
+
import seaborn as sns
|
| 14 |
+
import io
|
| 15 |
+
import base64
|
| 16 |
+
import warnings
|
| 17 |
+
warnings.filterwarnings('ignore')
|
| 18 |
+
|
| 19 |
+
class BusinessAnalystGPT:
|
| 20 |
+
def __init__(self):
|
| 21 |
+
self.df = None
|
| 22 |
+
self.analysis_results = ""
|
| 23 |
+
|
| 24 |
+
def analyze_dataset(self, file):
|
| 25 |
+
"""Analyze uploaded dataset and provide comprehensive insights"""
|
| 26 |
+
try:
|
| 27 |
+
# Read the dataset
|
| 28 |
+
if file.name.endswith('.csv'):
|
| 29 |
+
self.df = pd.read_csv(file.name)
|
| 30 |
+
elif file.name.endswith(('.xlsx', '.xls')):
|
| 31 |
+
self.df = pd.read_excel(file.name)
|
| 32 |
+
else:
|
| 33 |
+
return "Error: Please upload a CSV or Excel file."
|
| 34 |
+
|
| 35 |
+
# Basic dataset info
|
| 36 |
+
analysis = f"""
|
| 37 |
+
# 📊 DATASET ANALYSIS REPORT
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 38 |
|
| 39 |
+
## 📈 Basic Information
|
| 40 |
+
- **Dataset Shape**: {self.df.shape[0]} rows × {self.df.shape[1]} columns
|
| 41 |
+
- **Memory Usage**: {self.df.memory_usage(deep=True).sum() / 1024:.2f} KB
|
| 42 |
+
- **Missing Values**: {self.df.isnull().sum().sum()} total
|
| 43 |
|
| 44 |
+
## 📋 Column Information
|
|
|
|
| 45 |
"""
|
| 46 |
+
|
| 47 |
+
# Column details
|
| 48 |
+
for i, col in enumerate(self.df.columns):
|
| 49 |
+
dtype = str(self.df[col].dtype)
|
| 50 |
+
missing = self.df[col].isnull().sum()
|
| 51 |
+
unique_vals = self.df[col].nunique()
|
| 52 |
+
|
| 53 |
+
analysis += f"\n**{i+1}. {col}**\n"
|
| 54 |
+
analysis += f" - Data Type: {dtype}\n"
|
| 55 |
+
analysis += f" - Missing Values: {missing} ({missing/len(self.df)*100:.1f}%)\n"
|
| 56 |
+
analysis += f" - Unique Values: {unique_vals}\n"
|
| 57 |
+
|
| 58 |
+
if dtype in ['int64', 'float64']:
|
| 59 |
+
analysis += f" - Range: {self.df[col].min():.2f} to {self.df[col].max():.2f}\n"
|
| 60 |
+
analysis += f" - Mean: {self.df[col].mean():.2f}\n"
|
| 61 |
+
elif dtype == 'object':
|
| 62 |
+
top_values = self.df[col].value_counts().head(3)
|
| 63 |
+
analysis += f" - Top Values: {list(top_values.index)}\n"
|
| 64 |
+
|
| 65 |
+
# Add ML Model Recommendations
|
| 66 |
+
analysis += self._get_ml_recommendations()
|
| 67 |
+
|
| 68 |
+
# Add Visualization Recommendations
|
| 69 |
+
analysis += self._get_visualization_recommendations()
|
| 70 |
+
|
| 71 |
+
self.analysis_results = analysis
|
| 72 |
+
return analysis
|
| 73 |
+
|
| 74 |
+
except Exception as e:
|
| 75 |
+
return f"Error analyzing dataset: {str(e)}"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 76 |
|
| 77 |
+
def _get_ml_recommendations(self):
|
| 78 |
+
"""Analyze dataset and recommend suitable ML models with variable suggestions"""
|
| 79 |
+
if self.df is None:
|
| 80 |
+
return ""
|
| 81 |
+
|
| 82 |
+
ml_analysis = "\n\n## 🤖 MACHINE LEARNING MODEL RECOMMENDATIONS\n\n"
|
| 83 |
+
|
| 84 |
+
# Identify variable types
|
| 85 |
+
numeric_cols = self.df.select_dtypes(include=[np.number]).columns.tolist()
|
| 86 |
+
categorical_cols = self.df.select_dtypes(include=['object']).columns.tolist()
|
| 87 |
+
|
| 88 |
+
ml_analysis += "### 🎯 Potential Target Variables (Dependent Variables):\n"
|
| 89 |
+
|
| 90 |
+
# Suggest target variables based on data characteristics
|
| 91 |
+
target_suggestions = []
|
| 92 |
+
|
| 93 |
+
for col in numeric_cols:
|
| 94 |
+
unique_ratio = self.df[col].nunique() / len(self.df)
|
| 95 |
+
if unique_ratio < 0.1 and self.df[col].nunique() <= 10:
|
| 96 |
+
target_suggestions.append((col, "Classification", f"Has {self.df[col].nunique()} unique values - good for classification"))
|
| 97 |
+
elif unique_ratio > 0.1:
|
| 98 |
+
target_suggestions.append((col, "Regression", "Continuous values - suitable for regression"))
|
| 99 |
+
|
| 100 |
+
for col in categorical_cols:
|
| 101 |
+
if self.df[col].nunique() <= 10:
|
| 102 |
+
target_suggestions.append((col, "Classification", f"Categorical with {self.df[col].nunique()} classes"))
|
| 103 |
+
|
| 104 |
+
if target_suggestions:
|
| 105 |
+
for var, task_type, reason in target_suggestions:
|
| 106 |
+
ml_analysis += f"- **{var}** ({task_type}): {reason}\n"
|
| 107 |
else:
|
| 108 |
+
ml_analysis += "- No clear target variables identified. Please specify based on your business objective.\n"
|
|
|
|
|
|
|
| 109 |
|
| 110 |
+
ml_analysis += "\n### 📊 Feature Variables (Independent Variables):\n"
|
| 111 |
|
| 112 |
+
# List potential feature variables
|
| 113 |
+
all_cols = list(self.df.columns)
|
| 114 |
+
if len(numeric_cols) > 0:
|
| 115 |
+
ml_analysis += f"- **Numeric Features**: {', '.join(numeric_cols)}\n"
|
| 116 |
+
if len(categorical_cols) > 0:
|
| 117 |
+
ml_analysis += f"- **Categorical Features**: {', '.join(categorical_cols)}\n"
|
| 118 |
+
|
| 119 |
+
# Model recommendations based on data characteristics
|
| 120 |
+
ml_analysis += "\n### 🔮 Recommended Models & Expected Performance:\n\n"
|
| 121 |
+
|
| 122 |
+
# Classification models
|
| 123 |
+
if any("Classification" in suggestion[1] for suggestion in target_suggestions):
|
| 124 |
+
ml_analysis += "#### 🎯 For Classification Tasks:\n"
|
| 125 |
+
ml_analysis += """
|
| 126 |
+
1. **Random Forest Classifier** ⭐⭐⭐⭐⭐
|
| 127 |
+
- Expected Accuracy: 85-95%
|
| 128 |
+
- Best for: Mixed data types, feature importance
|
| 129 |
+
- Pros: Handles missing values, no overfitting
|
| 130 |
+
|
| 131 |
+
2. **Logistic Regression** ⭐⭐⭐⭐
|
| 132 |
+
- Expected Accuracy: 75-85%
|
| 133 |
+
- Best for: Linear relationships, interpretability
|
| 134 |
+
- Pros: Fast, interpretable coefficients
|
| 135 |
+
|
| 136 |
+
3. **Decision Tree** ⭐⭐⭐
|
| 137 |
+
- Expected Accuracy: 70-80%
|
| 138 |
+
- Best for: Rule-based decisions, interpretability
|
| 139 |
+
- Pros: Easy to understand and visualize
|
| 140 |
+
|
| 141 |
+
4. **Support Vector Machine (SVM)** ⭐⭐⭐⭐
|
| 142 |
+
- Expected Accuracy: 80-90%
|
| 143 |
+
- Best for: High-dimensional data, small datasets
|
| 144 |
+
- Pros: Effective for complex patterns
|
| 145 |
+
|
| 146 |
+
5. **K-Nearest Neighbors (KNN)** ⭐⭐⭐
|
| 147 |
+
- Expected Accuracy: 70-85%
|
| 148 |
+
- Best for: Simple patterns, small datasets
|
| 149 |
+
- Pros: Simple, no assumptions about data
|
| 150 |
+
"""
|
| 151 |
+
|
| 152 |
+
# Regression models
|
| 153 |
+
if any("Regression" in suggestion[1] for suggestion in target_suggestions):
|
| 154 |
+
ml_analysis += "\n#### 📈 For Regression Tasks:\n"
|
| 155 |
+
ml_analysis += """
|
| 156 |
+
1. **Random Forest Regressor** ⭐⭐⭐⭐⭐
|
| 157 |
+
- Expected R² Score: 0.80-0.95
|
| 158 |
+
- Best for: Non-linear relationships, feature importance
|
| 159 |
+
- Pros: Robust, handles outliers well
|
| 160 |
+
|
| 161 |
+
2. **Linear Regression** ⭐⭐⭐⭐
|
| 162 |
+
- Expected R² Score: 0.70-0.85
|
| 163 |
+
- Best for: Linear relationships, interpretability
|
| 164 |
+
- Pros: Fast, interpretable, baseline model
|
| 165 |
+
|
| 166 |
+
3. **Support Vector Regression (SVR)** ⭐⭐⭐⭐
|
| 167 |
+
- Expected R² Score: 0.75-0.90
|
| 168 |
+
- Best for: Non-linear patterns, robust predictions
|
| 169 |
+
- Pros: Effective for complex relationships
|
| 170 |
+
|
| 171 |
+
4. **Decision Tree Regressor** ⭐⭐⭐
|
| 172 |
+
- Expected R² Score: 0.65-0.80
|
| 173 |
+
- Best for: Non-linear, interpretable rules
|
| 174 |
+
- Pros: Easy to understand decision path
|
| 175 |
+
"""
|
| 176 |
+
|
| 177 |
+
# Data preprocessing recommendations
|
| 178 |
+
ml_analysis += "\n### 🛠️ Data Preprocessing Recommendations:\n"
|
| 179 |
+
|
| 180 |
+
missing_data = self.df.isnull().sum().sum()
|
| 181 |
+
if missing_data > 0:
|
| 182 |
+
ml_analysis += f"- **Handle Missing Data**: {missing_data} missing values need attention\n"
|
| 183 |
+
|
| 184 |
+
if len(categorical_cols) > 0:
|
| 185 |
+
ml_analysis += "- **Encode Categorical Variables**: Use Label Encoding or One-Hot Encoding\n"
|
| 186 |
+
|
| 187 |
+
if len(numeric_cols) > 1:
|
| 188 |
+
ml_analysis += "- **Feature Scaling**: Consider StandardScaler for SVM/KNN models\n"
|
| 189 |
+
|
| 190 |
+
outliers_detected = False
|
| 191 |
+
for col in numeric_cols:
|
| 192 |
+
Q1 = self.df[col].quantile(0.25)
|
| 193 |
+
Q3 = self.df[col].quantile(0.75)
|
| 194 |
+
IQR = Q3 - Q1
|
| 195 |
+
outliers = ((self.df[col] < (Q1 - 1.5 * IQR)) | (self.df[col] > (Q3 + 1.5 * IQR))).sum()
|
| 196 |
+
if outliers > len(self.df) * 0.05: # More than 5% outliers
|
| 197 |
+
outliers_detected = True
|
| 198 |
+
break
|
| 199 |
+
|
| 200 |
+
if outliers_detected:
|
| 201 |
+
ml_analysis += "- **Handle Outliers**: Detected outliers that may affect model performance\n"
|
| 202 |
+
|
| 203 |
+
return ml_analysis
|
| 204 |
|
| 205 |
+
def _get_visualization_recommendations(self):
|
| 206 |
+
"""Provide specific chart recommendations for variables"""
|
| 207 |
+
if self.df is None:
|
| 208 |
+
return ""
|
| 209 |
+
|
| 210 |
+
viz_analysis = "\n\n## 📊 DATA VISUALIZATION RECOMMENDATIONS\n\n"
|
| 211 |
+
|
| 212 |
+
numeric_cols = self.df.select_dtypes(include=[np.number]).columns.tolist()
|
| 213 |
+
categorical_cols = self.df.select_dtypes(include=['object']).columns.tolist()
|
| 214 |
+
|
| 215 |
+
# Single variable visualizations
|
| 216 |
+
viz_analysis += "### 📈 Single Variable Analysis:\n\n"
|
| 217 |
+
|
| 218 |
+
for col in numeric_cols:
|
| 219 |
+
viz_analysis += f"**{col}** (Numeric):\n"
|
| 220 |
+
viz_analysis += f"- **Histogram**: Show distribution of {col}\n"
|
| 221 |
+
viz_analysis += f"- **Box Plot**: Identify outliers in {col}\n"
|
| 222 |
+
viz_analysis += f"- **Density Plot**: Smooth distribution curve for {col}\n\n"
|
| 223 |
+
|
| 224 |
+
for col in categorical_cols:
|
| 225 |
+
unique_count = self.df[col].nunique()
|
| 226 |
+
viz_analysis += f"**{col}** (Categorical - {unique_count} categories):\n"
|
| 227 |
+
if unique_count <= 10:
|
| 228 |
+
viz_analysis += f"- **Bar Chart**: Count of each category in {col}\n"
|
| 229 |
+
viz_analysis += f"- **Pie Chart**: Proportion of categories in {col}\n"
|
| 230 |
else:
|
| 231 |
+
viz_analysis += f"- **Bar Chart**: Top 10 categories in {col}\n"
|
| 232 |
+
viz_analysis += f"- **Donut Chart**: Alternative to pie chart for {col}\n\n"
|
| 233 |
+
|
| 234 |
+
# Two variable relationships
|
| 235 |
+
if len(self.df.columns) > 1:
|
| 236 |
+
viz_analysis += "### 🔗 Two Variable Relationships:\n\n"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 237 |
|
| 238 |
+
# Numeric vs Numeric
|
| 239 |
+
if len(numeric_cols) >= 2:
|
| 240 |
+
viz_analysis += "**Numeric vs Numeric Combinations:**\n"
|
| 241 |
+
for i in range(len(numeric_cols)):
|
| 242 |
+
for j in range(i+1, len(numeric_cols)):
|
| 243 |
+
col1, col2 = numeric_cols[i], numeric_cols[j]
|
| 244 |
+
viz_analysis += f"- **Scatter Plot**: {col1} (X-axis) vs {col2} (Y-axis)\n"
|
| 245 |
+
viz_analysis += f"- **Correlation Heatmap**: Relationship strength between {col1} and {col2}\n"
|
| 246 |
+
viz_analysis += "\n"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 247 |
|
| 248 |
+
# Categorical vs Numeric
|
| 249 |
+
if len(categorical_cols) > 0 and len(numeric_cols) > 0:
|
| 250 |
+
viz_analysis += "**Categorical vs Numeric Combinations:**\n"
|
| 251 |
+
for cat_col in categorical_cols:
|
| 252 |
+
for num_col in numeric_cols:
|
| 253 |
+
viz_analysis += f"- **Box Plot**: {cat_col} (X-axis) vs {num_col} (Y-axis)\n"
|
| 254 |
+
viz_analysis += f"- **Violin Plot**: Distribution of {num_col} across {cat_col} categories\n"
|
| 255 |
+
viz_analysis += f"- **Bar Plot**: Average {num_col} by {cat_col}\n"
|
| 256 |
+
viz_analysis += "\n"
|
| 257 |
+
|
| 258 |
+
# Categorical vs Categorical
|
| 259 |
+
if len(categorical_cols) >= 2:
|
| 260 |
+
viz_analysis += "**Categorical vs Categorical Combinations:**\n"
|
| 261 |
+
for i in range(len(categorical_cols)):
|
| 262 |
+
for j in range(i+1, len(categorical_cols)):
|
| 263 |
+
col1, col2 = categorical_cols[i], categorical_cols[j]
|
| 264 |
+
viz_analysis += f"- **Stacked Bar Chart**: {col1} (X-axis) stacked by {col2}\n"
|
| 265 |
+
viz_analysis += f"- **Heatmap**: Cross-tabulation of {col1} vs {col2}\n"
|
| 266 |
+
viz_analysis += f"- **Grouped Bar Chart**: {col1} grouped by {col2}\n"
|
| 267 |
+
viz_analysis += "\n"
|
| 268 |
+
|
| 269 |
+
# Advanced visualizations
|
| 270 |
+
if len(self.df.columns) >= 3:
|
| 271 |
+
viz_analysis += "### 🎨 Advanced Multi-Variable Analysis:\n\n"
|
| 272 |
+
|
| 273 |
+
if len(numeric_cols) >= 3:
|
| 274 |
+
viz_analysis += "**For 3+ Numeric Variables:**\n"
|
| 275 |
+
viz_analysis += f"- **3D Scatter Plot**: {numeric_cols[0]} (X) vs {numeric_cols[1]} (Y) vs {numeric_cols[2]} (Z)\n"
|
| 276 |
+
viz_analysis += f"- **Pair Plot**: All numeric variables against each other\n"
|
| 277 |
+
viz_analysis += f"- **Correlation Matrix**: Heatmap of all numeric correlations\n\n"
|
| 278 |
+
|
| 279 |
+
if len(numeric_cols) >= 2 and len(categorical_cols) >= 1:
|
| 280 |
+
viz_analysis += "**For Mixed Variable Types:**\n"
|
| 281 |
+
viz_analysis += f"- **Scatter Plot with Color**: {numeric_cols[0]} vs {numeric_cols[1]} colored by {categorical_cols[0]}\n"
|
| 282 |
+
viz_analysis += f"- **Bubble Chart**: {numeric_cols[0]} (X) vs {numeric_cols[1]} (Y) with bubble size from another variable\n\n"
|
| 283 |
+
|
| 284 |
+
# Dashboard recommendations
|
| 285 |
+
viz_analysis += "### 📋 Dashboard Layout Suggestions:\n\n"
|
| 286 |
+
viz_analysis += "**Top Row**: Overview metrics and key KPIs\n"
|
| 287 |
+
viz_analysis += "**Middle Section**: Main analysis charts (2-3 key visualizations)\n"
|
| 288 |
+
viz_analysis += "**Bottom Section**: Detailed breakdowns and filters\n"
|
| 289 |
+
viz_analysis += "**Side Panel**: Interactive filters and controls\n"
|
| 290 |
+
|
| 291 |
+
return viz_analysis
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 292 |
|
| 293 |
+
def generate_business_insights(self, question):
|
| 294 |
+
"""Generate business insights based on the question and dataset"""
|
| 295 |
+
if self.df is None:
|
| 296 |
+
return "Please upload a dataset first to generate insights."
|
| 297 |
+
|
| 298 |
+
insights = f"""
|
| 299 |
+
# 💡 BUSINESS INSIGHTS & RECOMMENDATIONS
|
| 300 |
|
| 301 |
+
## Question: {question}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 302 |
|
| 303 |
+
## 📊 Data-Driven Analysis:
|
| 304 |
+
"""
|
| 305 |
+
|
| 306 |
+
# Basic statistics
|
| 307 |
+
numeric_cols = self.df.select_dtypes(include=[np.number]).columns.tolist()
|
| 308 |
+
categorical_cols = self.df.select_dtypes(include=['object']).columns.tolist()
|
| 309 |
+
|
| 310 |
+
if len(numeric_cols) > 0:
|
| 311 |
+
insights += "\n### 📈 Key Metrics:\n"
|
| 312 |
+
for col in numeric_cols[:5]: # Show top 5 numeric columns
|
| 313 |
+
mean_val = self.df[col].mean()
|
| 314 |
+
median_val = self.df[col].median()
|
| 315 |
+
std_val = self.df[col].std()
|
| 316 |
+
insights += f"- **{col}**: Mean = {mean_val:.2f}, Median = {median_val:.2f}, Std = {std_val:.2f}\n"
|
| 317 |
+
|
| 318 |
+
if len(categorical_cols) > 0:
|
| 319 |
+
insights += "\n### 📋 Category Distribution:\n"
|
| 320 |
+
for col in categorical_cols[:3]: # Show top 3 categorical columns
|
| 321 |
+
top_category = self.df[col].mode()[0]
|
| 322 |
+
category_count = self.df[col].value_counts().iloc[0]
|
| 323 |
+
total_count = len(self.df)
|
| 324 |
+
percentage = (category_count / total_count) * 100
|
| 325 |
+
insights += f"- **{col}**: Most common = '{top_category}' ({category_count}/{total_count} = {percentage:.1f}%)\n"
|
| 326 |
+
|
| 327 |
+
# Generate recommendations based on question keywords
|
| 328 |
+
question_lower = question.lower()
|
| 329 |
+
|
| 330 |
+
if any(word in question_lower for word in ['revenue', 'sales', 'profit', 'income']):
|
| 331 |
+
insights += "\n### 💰 Revenue/Sales Insights:\n"
|
| 332 |
+
insights += "- Focus on high-performing segments identified in the data\n"
|
| 333 |
+
insights += "- Analyze seasonal trends if time data is available\n"
|
| 334 |
+
insights += "- Consider customer segmentation based on purchase behavior\n"
|
| 335 |
+
|
| 336 |
+
elif any(word in question_lower for word in ['customer', 'client', 'user']):
|
| 337 |
+
insights += "\n### 👥 Customer Insights:\n"
|
| 338 |
+
insights += "- Segment customers based on key characteristics\n"
|
| 339 |
+
insights += "- Identify high-value customer profiles\n"
|
| 340 |
+
insights += "- Analyze customer retention patterns\n"
|
| 341 |
+
|
| 342 |
+
elif any(word in question_lower for word in ['marketing', 'campaign', 'advertising']):
|
| 343 |
+
insights += "\n### 📢 Marketing Insights:\n"
|
| 344 |
+
insights += "- Evaluate campaign performance metrics\n"
|
| 345 |
+
insights += "- Identify most effective channels\n"
|
| 346 |
+
insights += "- Optimize targeting based on demographic data\n"
|
| 347 |
+
|
| 348 |
+
elif any(word in question_lower for word in ['predict', 'forecast', 'future']):
|
| 349 |
+
insights += "\n### 🔮 Predictive Insights:\n"
|
| 350 |
+
insights += "- Use historical patterns for forecasting\n"
|
| 351 |
+
insights += "- Apply machine learning models for predictions\n"
|
| 352 |
+
insights += "- Consider external factors that might influence outcomes\n"
|
| 353 |
+
|
| 354 |
else:
|
| 355 |
+
insights += "\n### 🎯 General Business Recommendations:\n"
|
| 356 |
+
insights += "- Identify key performance indicators from your data\n"
|
| 357 |
+
insights += "- Look for correlations between important variables\n"
|
| 358 |
+
insights += "- Consider segmentation strategies based on data patterns\n"
|
| 359 |
+
|
| 360 |
+
# Add data quality assessment
|
| 361 |
+
missing_data_pct = (self.df.isnull().sum().sum() / (self.df.shape[0] * self.df.shape[1])) * 100
|
| 362 |
+
insights += f"\n### ⚠️ Data Quality Notes:\n"
|
| 363 |
+
insights += f"- Missing data: {missing_data_pct:.1f}% of total data points\n"
|
| 364 |
+
insights += f"- Data completeness: {100-missing_data_pct:.1f}%\n"
|
| 365 |
+
|
| 366 |
+
if missing_data_pct > 10:
|
| 367 |
+
insights += "- **Recommendation**: Address missing data before making critical decisions\n"
|
| 368 |
+
|
| 369 |
+
return insights
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 370 |
|
| 371 |
+
def create_visualization(self, chart_type, x_column, y_column):
|
| 372 |
+
"""Create visualizations based on user selection"""
|
| 373 |
+
if self.df is None:
|
| 374 |
+
return "Please upload a dataset first."
|
| 375 |
+
|
| 376 |
+
try:
|
| 377 |
+
plt.figure(figsize=(10, 6))
|
| 378 |
+
plt.style.use('default')
|
| 379 |
+
|
| 380 |
+
if chart_type == "Scatter Plot":
|
| 381 |
+
plt.scatter(self.df[x_column], self.df[y_column], alpha=0.6)
|
| 382 |
+
plt.xlabel(x_column)
|
| 383 |
+
plt.ylabel(y_column)
|
| 384 |
+
plt.title(f'Scatter Plot: {x_column} vs {y_column}')
|
| 385 |
+
|
| 386 |
+
elif chart_type == "Line Chart":
|
| 387 |
+
plt.plot(self.df[x_column], self.df[y_column])
|
| 388 |
+
plt.xlabel(x_column)
|
| 389 |
+
plt.ylabel(y_column)
|
| 390 |
+
plt.title(f'Line Chart: {x_column} vs {y_column}')
|
| 391 |
+
|
| 392 |
+
elif chart_type == "Bar Chart":
|
| 393 |
+
if self.df[x_column].dtype == 'object':
|
| 394 |
+
value_counts = self.df[x_column].value_counts().head(10)
|
| 395 |
+
plt.bar(value_counts.index, value_counts.values)
|
| 396 |
+
plt.xlabel(x_column)
|
| 397 |
+
plt.ylabel('Count')
|
| 398 |
+
plt.title(f'Bar Chart: {x_column}')
|
| 399 |
+
plt.xticks(rotation=45)
|
| 400 |
+
else:
|
| 401 |
+
plt.bar(self.df[x_column], self.df[y_column])
|
| 402 |
+
plt.xlabel(x_column)
|
| 403 |
+
plt.ylabel(y_column)
|
| 404 |
+
plt.title(f'Bar Chart: {x_column} vs {y_column}')
|
| 405 |
+
|
| 406 |
+
elif chart_type == "Histogram":
|
| 407 |
+
plt.hist(self.df[x_column], bins=30, alpha=0.7)
|
| 408 |
+
plt.xlabel(x_column)
|
| 409 |
+
plt.ylabel('Frequency')
|
| 410 |
+
plt.title(f'Histogram: {x_column}')
|
| 411 |
+
|
| 412 |
+
elif chart_type == "Box Plot":
|
| 413 |
+
if y_column and self.df[y_column].dtype == 'object':
|
| 414 |
+
self.df.boxplot(column=x_column, by=y_column)
|
| 415 |
+
plt.title(f'Box Plot: {x_column} by {y_column}')
|
| 416 |
+
else:
|
| 417 |
+
plt.boxplot(self.df[x_column].dropna())
|
| 418 |
+
plt.ylabel(x_column)
|
| 419 |
+
plt.title(f'Box Plot: {x_column}')
|
| 420 |
+
|
| 421 |
+
plt.tight_layout()
|
| 422 |
+
|
| 423 |
+
# Save plot to bytes
|
| 424 |
+
img_buffer = io.BytesIO()
|
| 425 |
+
plt.savefig(img_buffer, format='png', dpi=150, bbox_inches='tight')
|
| 426 |
+
img_buffer.seek(0)
|
| 427 |
+
plt.close()
|
| 428 |
+
|
| 429 |
+
return img_buffer.getvalue()
|
| 430 |
+
|
| 431 |
+
except Exception as e:
|
| 432 |
+
return f"Error creating visualization: {str(e)}"
|
| 433 |
|
| 434 |
+
# Initialize the Business Analyst GPT
|
| 435 |
+
analyst = BusinessAnalystGPT()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 436 |
|
| 437 |
+
# Define the Gradio interface
|
| 438 |
+
def analyze_file(file):
|
| 439 |
+
return analyst.analyze_dataset(file)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 440 |
|
| 441 |
+
def generate_insights(question):
|
| 442 |
+
return analyst.generate_business_insights(question)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 443 |
|
| 444 |
+
def create_chart(chart_type, x_col, y_col):
|
| 445 |
+
result = analyst.create_visualization(chart_type, x_col, y_col)
|
| 446 |
+
if isinstance(result, bytes):
|
| 447 |
+
return result
|
| 448 |
+
else:
|
| 449 |
+
return result
|
| 450 |
+
|
| 451 |
+
def get_columns():
|
| 452 |
+
if analyst.df is not None:
|
| 453 |
+
return gr.update(choices=list(analyst.df.columns)), gr.update(choices=list(analyst.df.columns))
|
| 454 |
+
return gr.update(choices=[]), gr.update(choices=[])
|
| 455 |
+
|
| 456 |
+
# Create the Gradio interface
|
| 457 |
+
with gr.Blocks(title="Business Analyst GPT", theme=gr.themes.Soft()) as demo:
|
| 458 |
+
gr.Markdown("""
|
| 459 |
+
# 🤖 Business Analyst GPT
|
| 460 |
+
### Your AI-Powered Data Analysis Assistant
|
| 461 |
+
|
| 462 |
+
Upload your dataset and get comprehensive business insights, ML model recommendations, and visualization suggestions!
|
| 463 |
+
""")
|
| 464 |
+
|
| 465 |
+
with gr.Tab("📊 Dataset Analysis"):
|
| 466 |
+
with gr.Row():
|
| 467 |
+
file_input = gr.File(label="Upload your dataset (CSV or Excel)", file_types=[".csv", ".xlsx", ".xls"])
|
| 468 |
+
analyze_btn = gr.Button("🔍 Analyze Dataset", variant="primary")
|
| 469 |
+
|
| 470 |
+
analysis_output = gr.Markdown(label="Analysis Results")
|
| 471 |
+
analyze_btn.click(analyze_file, inputs=[file_input], outputs=[analysis_output])
|
| 472 |
+
|
| 473 |
+
with gr.Tab("💡 Business Insights"):
|
| 474 |
+
with gr.Row():
|
| 475 |
+
question_input = gr.Textbox(
|
| 476 |
+
label="Ask a business question about your data",
|
| 477 |
+
placeholder="e.g., How can I increase revenue? What are the key customer segments?",
|
| 478 |
+
lines=2
|
| 479 |
+
)
|
| 480 |
+
insights_btn = gr.Button("💡 Generate Insights", variant="primary")
|
| 481 |
+
|
| 482 |
+
insights_output = gr.Markdown(label="Business Insights")
|
| 483 |
+
insights_btn.click(generate_insights, inputs=[question_input], outputs=[insights_output])
|
| 484 |
+
|
| 485 |
+
with gr.Tab("📈 Data Visualization"):
|
| 486 |
+
with gr.Row():
|
| 487 |
+
chart_type = gr.Dropdown(
|
| 488 |
+
choices=["Scatter Plot", "Line Chart", "Bar Chart", "Histogram", "Box Plot"],
|
| 489 |
+
label="Chart Type",
|
| 490 |
+
value="Scatter Plot"
|
| 491 |
+
)
|
| 492 |
+
refresh_cols = gr.Button("🔄 Refresh Columns")
|
| 493 |
+
|
| 494 |
+
with gr.Row():
|
| 495 |
+
x_column = gr.Dropdown(choices=[], label="X-axis Column")
|
| 496 |
+
y_column = gr.Dropdown(choices=[], label="Y-axis Column (optional for some charts)")
|
| 497 |
+
|
| 498 |
+
create_viz_btn = gr.Button("📊 Create Visualization", variant="primary")
|
| 499 |
+
viz_output = gr.Image(label="Visualization")
|
| 500 |
+
|
| 501 |
+
refresh_cols.click(get_columns, outputs=[x_column, y_column])
|
| 502 |
+
create_viz_btn.click(create_chart, inputs=[chart_type, x_column, y_column], outputs=[viz_output])
|
| 503 |
|
| 504 |
+
with gr.Tab("ℹ️ How to Use"):
|
| 505 |
+
gr.Markdown("""
|
| 506 |
+
## 🚀 How to Use Business Analyst GPT
|
| 507 |
+
|
| 508 |
+
### Step 1: Upload Your Dataset
|
| 509 |
+
- Click on "Dataset Analysis" tab
|
| 510 |
+
- Upload a CSV or Excel file containing your business data
|
| 511 |
+
- Click "Analyze Dataset" to get comprehensive insights
|
| 512 |
+
|
| 513 |
+
### Step 2: Get ML Model Recommendations
|
| 514 |
+
After uploading, you'll receive:
|
| 515 |
+
- **Target Variable Suggestions**: Which columns can be predicted
|
| 516 |
+
- **Feature Variable Identification**: Which columns to use as predictors
|
| 517 |
+
- **Model Recommendations**: Best ML algorithms for your data
|
| 518 |
+
- **Expected Performance**: Accuracy estimates for each model
|
| 519 |
+
|
| 520 |
+
### Step 3: Get Specific Visualization Ideas
|
| 521 |
+
The analysis will provide:
|
| 522 |
+
- **Single Variable Charts**: Best charts for each column
|
| 523 |
+
- **Two Variable Relationships**: Specific X-axis and Y-axis recommendations
|
| 524 |
+
- **Advanced Visualizations**: Multi-variable analysis suggestions
|
| 525 |
+
- **Dashboard Layout**: How to organize your charts
|
| 526 |
+
|
| 527 |
+
### Step 4: Generate Business Insights
|
| 528 |
+
- Ask specific business questions about your data
|
| 529 |
+
- Get data-driven recommendations and insights
|
| 530 |
+
- Receive actionable business strategies
|
| 531 |
+
|
| 532 |
+
### Step 5: Create Visualizations
|
| 533 |
+
- Choose from various chart types
|
| 534 |
+
- Select specific columns for X and Y axes
|
| 535 |
+
- Generate publication-ready charts
|
| 536 |
+
|
| 537 |
+
## 📋 Supported File Types
|
| 538 |
+
- CSV files (.csv)
|
| 539 |
+
- Excel files (.xlsx, .xls)
|
| 540 |
+
|
| 541 |
+
## 🎯 Best Practices
|
| 542 |
+
1. **Clean Data**: Ensure your dataset has clear column headers
|
| 543 |
+
2. **Relevant Questions**: Ask specific business questions for better insights
|
| 544 |
+
3. **Column Selection**: Choose appropriate columns for visualizations
|
| 545 |
+
4. **Data Size**: Larger datasets provide more reliable ML recommendations
|
| 546 |
+
""")
|
| 547 |
+
|
| 548 |
+
# Launch the app
|
| 549 |
+
if __name__ == "__main__":
|
| 550 |
+
demo.launch()
|