Spaces:
Running
Running
File size: 9,877 Bytes
acd7cf4 f1eedd1 acd7cf4 d02622b 43d27f2 d2a63cc acd7cf4 fb9c306 acd7cf4 3a3b216 acd7cf4 3a3b216 bccd595 3a3b216 283e483 799ac7c d02622b acd7cf4 799ac7c acd7cf4 3a3b216 fb9c306 0b9d8c7 acd7cf4 fb9c306 acd7cf4 d02622b 817f16e fb9c306 817f16e d02622b fb9c306 d02622b fb9c306 acd7cf4 0b9d8c7 acd7cf4 f1eedd1 f29e862 fb9c306 817f16e bda6eda acd7cf4 283e483 acd7cf4 d02622b 3a3b216 f1eedd1 3a3b216 f1eedd1 3a3b216 f29e862 acd7cf4 f29e862 acd7cf4 f29e862 bccd595 f29e862 283e483 9e67c3b 283e483 2bc66d4 bccd595 283e483 bccd595 9e67c3b bccd595 9e67c3b f1eedd1 2bc66d4 f1eedd1 bccd595 f1eedd1 bccd595 2bc66d4 9e67c3b acd7cf4 f1eedd1 acd7cf4 3a3b216 817f16e e25b548 2bc66d4 e25b548 5f219fc e25b548 9e67c3b e25b548 9e67c3b fb9c306 3a3b216 817f16e f1eedd1 817f16e fb9c306 8e67692 fb9c306 acd7cf4 817f16e d02622b 817f16e fb9c306 1189434 fb9c306 d02622b 9e67c3b acd7cf4 d02622b 3a3b216 f1eedd1 799ac7c 0b9d8c7 799ac7c 9e67c3b f1eedd1 283e483 9e67c3b 283e483 f1eedd1 fb9c306 799ac7c 2a0edfe fb9c306 799ac7c 9e67c3b acd7cf4 3a3b216 9e67c3b acd7cf4 f1eedd1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 |
import os
import time
from typing import Dict
import gradio as gr
from graphgen.bases import BaseLLMWrapper
from graphgen.bases.datatypes import Chunk
from graphgen.models import (
JsonKVStorage,
JsonListStorage,
NetworkXStorage,
OpenAIClient,
Tokenizer,
)
from graphgen.operators import (
build_kg,
chunk_documents,
extract_info,
generate_qas,
init_llm,
judge_statement,
partition_kg,
quiz,
read_files,
search_all,
)
from graphgen.utils import async_to_sync_method, compute_mm_hash, logger
sys_path = os.path.abspath(os.path.join(os.path.dirname(__file__), ".."))
class GraphGen:
def __init__(
self,
unique_id: int = int(time.time()),
working_dir: str = os.path.join(sys_path, "cache"),
tokenizer_instance: Tokenizer = None,
synthesizer_llm_client: OpenAIClient = None,
trainee_llm_client: OpenAIClient = None,
progress_bar: gr.Progress = None,
):
self.unique_id: int = unique_id
self.working_dir: str = working_dir
# llm
self.tokenizer_instance: Tokenizer = tokenizer_instance or Tokenizer(
model_name=os.getenv("TOKENIZER_MODEL")
)
self.synthesizer_llm_client: BaseLLMWrapper = (
synthesizer_llm_client or init_llm("synthesizer")
)
self.trainee_llm_client: BaseLLMWrapper = trainee_llm_client
self.full_docs_storage: JsonKVStorage = JsonKVStorage(
self.working_dir, namespace="full_docs"
)
self.chunks_storage: JsonKVStorage = JsonKVStorage(
self.working_dir, namespace="chunks"
)
self.graph_storage: NetworkXStorage = NetworkXStorage(
self.working_dir, namespace="graph"
)
self.rephrase_storage: JsonKVStorage = JsonKVStorage(
self.working_dir, namespace="rephrase"
)
self.partition_storage: JsonListStorage = JsonListStorage(
self.working_dir, namespace="partition"
)
self.search_storage: JsonKVStorage = JsonKVStorage(
os.path.join(self.working_dir, "data", "graphgen", f"{self.unique_id}"),
namespace="search",
)
self.qa_storage: JsonListStorage = JsonListStorage(
os.path.join(self.working_dir, "data", "graphgen", f"{self.unique_id}"),
namespace="qa",
)
self.extract_storage: JsonKVStorage = JsonKVStorage(
os.path.join(self.working_dir, "data", "graphgen", f"{self.unique_id}"),
namespace="extraction",
)
# webui
self.progress_bar: gr.Progress = progress_bar
@async_to_sync_method
async def read(self, read_config: Dict):
"""
read files from input sources
"""
doc_stream = read_files(**read_config, cache_dir=self.working_dir)
batch = {}
for doc in doc_stream:
doc_id = compute_mm_hash(doc, prefix="doc-")
batch[doc_id] = doc
# TODO: configurable whether to use coreference resolution
_add_doc_keys = self.full_docs_storage.filter_keys(list(batch.keys()))
new_docs = {k: v for k, v in batch.items() if k in _add_doc_keys}
if len(new_docs) == 0:
logger.warning("All documents are already in the storage")
return
self.full_docs_storage.upsert(new_docs)
self.full_docs_storage.index_done_callback()
@async_to_sync_method
async def chunk(self, chunk_config: Dict):
"""
chunk documents into smaller pieces from full_docs_storage if not already present
"""
new_docs = self.full_docs_storage.get_all()
if len(new_docs) == 0:
logger.warning("All documents are already in the storage")
return
inserting_chunks = await chunk_documents(
new_docs,
self.tokenizer_instance,
self.progress_bar,
**chunk_config,
)
_add_chunk_keys = self.chunks_storage.filter_keys(list(inserting_chunks.keys()))
inserting_chunks = {
k: v for k, v in inserting_chunks.items() if k in _add_chunk_keys
}
if len(inserting_chunks) == 0:
logger.warning("All chunks are already in the storage")
return
self.chunks_storage.upsert(inserting_chunks)
self.chunks_storage.index_done_callback()
@async_to_sync_method
async def build_kg(self):
"""
build knowledge graph from text chunks
"""
# Step 1: get new chunks
inserting_chunks = self.chunks_storage.get_all()
if len(inserting_chunks) == 0:
logger.warning("All chunks are already in the storage")
return
logger.info("[New Chunks] inserting %d chunks", len(inserting_chunks))
# Step 2: build knowledge graph from new chunks
_add_entities_and_relations = await build_kg(
llm_client=self.synthesizer_llm_client,
kg_instance=self.graph_storage,
chunks=[Chunk.from_dict(k, v) for k, v in inserting_chunks.items()],
progress_bar=self.progress_bar,
)
if not _add_entities_and_relations:
logger.warning("No entities or relations extracted from text chunks")
return
# Step 3: upsert new entities and relations to the graph storage
self.graph_storage.index_done_callback()
return _add_entities_and_relations
@async_to_sync_method
async def search(self, search_config: Dict):
logger.info("[Search] %s ...", ", ".join(search_config["data_sources"]))
seeds = self.full_docs_storage.get_all()
if len(seeds) == 0:
logger.warning("All documents are already been searched")
return
search_results = await search_all(
seed_data=seeds,
search_config=search_config,
)
_add_search_keys = self.search_storage.filter_keys(list(search_results.keys()))
search_results = {
k: v for k, v in search_results.items() if k in _add_search_keys
}
if len(search_results) == 0:
logger.warning("All search results are already in the storage")
return
self.search_storage.upsert(search_results)
self.search_storage.index_done_callback()
@async_to_sync_method
async def quiz_and_judge(self, quiz_and_judge_config: Dict):
logger.warning(
"Quiz and Judge operation needs trainee LLM client."
" Make sure to provide one."
)
max_samples = quiz_and_judge_config["quiz_samples"]
await quiz(
self.synthesizer_llm_client,
self.graph_storage,
self.rephrase_storage,
max_samples,
progress_bar=self.progress_bar,
)
# TODO: assert trainee_llm_client is valid before judge
if not self.trainee_llm_client:
# TODO: shutdown existing synthesizer_llm_client properly
logger.info("No trainee LLM client provided, initializing a new one.")
self.synthesizer_llm_client.shutdown()
self.trainee_llm_client = init_llm("trainee")
re_judge = quiz_and_judge_config["re_judge"]
_update_relations = await judge_statement(
self.trainee_llm_client,
self.graph_storage,
self.rephrase_storage,
re_judge,
progress_bar=self.progress_bar,
)
self.rephrase_storage.index_done_callback()
_update_relations.index_done_callback()
logger.info("Shutting down trainee LLM client.")
self.trainee_llm_client.shutdown()
self.trainee_llm_client = None
logger.info("Restarting synthesizer LLM client.")
self.synthesizer_llm_client.restart()
@async_to_sync_method
async def partition(self, partition_config: Dict):
batches = await partition_kg(
self.graph_storage,
self.chunks_storage,
self.tokenizer_instance,
partition_config,
)
self.partition_storage.upsert(batches)
return batches
@async_to_sync_method
async def extract(self, extract_config: Dict):
logger.info("Extracting information from given chunks...")
results = await extract_info(
self.synthesizer_llm_client,
self.chunks_storage,
extract_config,
progress_bar=self.progress_bar,
)
if not results:
logger.warning("No information extracted")
return
self.extract_storage.upsert(results)
self.extract_storage.index_done_callback()
@async_to_sync_method
async def generate(self, generate_config: Dict):
batches = self.partition_storage.data
if not batches:
logger.warning("No partitions found for QA generation")
return
# Step 2: generate QA pairs
results = await generate_qas(
self.synthesizer_llm_client,
batches,
generate_config,
progress_bar=self.progress_bar,
)
if not results:
logger.warning("No QA pairs generated")
return
# Step 3: store the generated QA pairs
self.qa_storage.upsert(results)
self.qa_storage.index_done_callback()
@async_to_sync_method
async def clear(self):
self.full_docs_storage.drop()
self.chunks_storage.drop()
self.search_storage.drop()
self.graph_storage.clear()
self.rephrase_storage.drop()
self.qa_storage.drop()
logger.info("All caches are cleared")
# TODO: add data filtering step here in the future
# graph_gen.filter(filter_config=config["filter"])
|