File size: 6,395 Bytes
d02622b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
import asyncio
import math
from typing import Any, Dict, List, Optional

import aiohttp
from tenacity import (
    retry,
    retry_if_exception_type,
    stop_after_attempt,
    wait_exponential,
)

from graphgen.bases.base_llm_wrapper import BaseLLMWrapper
from graphgen.bases.datatypes import Token
from graphgen.models.llm.limitter import RPM, TPM


class HTTPClient(BaseLLMWrapper):
    """
    A generic async HTTP client for LLMs compatible with OpenAI's chat/completions format.
    It uses aiohttp for making requests and includes retry logic and token usage tracking.
    Usage example:
        client = HTTPClient(
            model_name="gpt-4o-mini",
            base_url="http://localhost:8080",
            api_key="your_api_key",
            json_mode=True,
            seed=42,
            topk_per_token=5,
            request_limit=True,
        )

        answer = await client.generate_answer("Hello, world!")
        tokens = await client.generate_topk_per_token("Hello, world!")
    """

    _instance: Optional["HTTPClient"] = None
    _lock = asyncio.Lock()

    def __new__(cls, **kwargs):
        if cls._instance is None:
            cls._instance = super().__new__(cls)
        return cls._instance

    def __init__(
        self,
        *,
        model: str,
        base_url: str,
        api_key: Optional[str] = None,
        json_mode: bool = False,
        seed: Optional[int] = None,
        topk_per_token: int = 5,
        request_limit: bool = False,
        rpm: Optional[RPM] = None,
        tpm: Optional[TPM] = None,
        **kwargs: Any,
    ):
        # Initialize only once in the singleton pattern
        if getattr(self, "_initialized", False):
            return
        self._initialized: bool = True
        super().__init__(**kwargs)
        self.model_name = model
        self.base_url = base_url.rstrip("/")
        self.api_key = api_key
        self.json_mode = json_mode
        self.seed = seed
        self.topk_per_token = topk_per_token
        self.request_limit = request_limit
        self.rpm = rpm or RPM()
        self.tpm = tpm or TPM()

        self.token_usage: List[Dict[str, int]] = []
        self._session: Optional[aiohttp.ClientSession] = None

    @property
    def session(self) -> aiohttp.ClientSession:
        if self._session is None or self._session.closed:
            headers = (
                {"Authorization": f"Bearer {self.api_key}"} if self.api_key else {}
            )
            self._session = aiohttp.ClientSession(headers=headers)
        return self._session

    async def close(self):
        if self._session and not self._session.closed:
            await self._session.close()

    def _build_body(self, text: str, history: List[str]) -> Dict[str, Any]:
        messages = []
        if self.system_prompt:
            messages.append({"role": "system", "content": self.system_prompt})

        # chatml format: alternating user and assistant messages
        if history and isinstance(history[0], dict):
            messages.extend(history)

        messages.append({"role": "user", "content": text})

        body = {
            "model": self.model_name,
            "messages": messages,
            "temperature": self.temperature,
            "top_p": self.top_p,
            "max_tokens": self.max_tokens,
        }
        if self.seed:
            body["seed"] = self.seed
        if self.json_mode:
            body["response_format"] = {"type": "json_object"}
        return body

    @retry(
        stop=stop_after_attempt(5),
        wait=wait_exponential(multiplier=1, min=4, max=10),
        retry=retry_if_exception_type((aiohttp.ClientError, asyncio.TimeoutError)),
    )
    async def generate_answer(
        self,
        text: str,
        history: Optional[List[str]] = None,
        **extra: Any,
    ) -> str:
        body = self._build_body(text, history or [])
        prompt_tokens = sum(
            len(self.tokenizer.encode(m["content"])) for m in body["messages"]
        )
        est = prompt_tokens + body["max_tokens"]

        if self.request_limit:
            await self.rpm.wait(silent=True)
            await self.tpm.wait(est, silent=True)

        async with self.session.post(
            f"{self.base_url}/chat/completions",
            json=body,
            timeout=aiohttp.ClientTimeout(total=60),
        ) as resp:
            resp.raise_for_status()
            data = await resp.json()

        msg = data["choices"][0]["message"]["content"]
        if "usage" in data:
            self.token_usage.append(
                {
                    "prompt_tokens": data["usage"]["prompt_tokens"],
                    "completion_tokens": data["usage"]["completion_tokens"],
                    "total_tokens": data["usage"]["total_tokens"],
                }
            )
        return self.filter_think_tags(msg)

    @retry(
        stop=stop_after_attempt(5),
        wait=wait_exponential(multiplier=1, min=4, max=10),
        retry=retry_if_exception_type((aiohttp.ClientError, asyncio.TimeoutError)),
    )
    async def generate_topk_per_token(
        self,
        text: str,
        history: Optional[List[str]] = None,
        **extra: Any,
    ) -> List[Token]:
        body = self._build_body(text, history or [])
        body["max_tokens"] = 1
        if self.topk_per_token > 0:
            body["logprobs"] = True
            body["top_logprobs"] = self.topk_per_token

        async with self.session.post(
            f"{self.base_url}/chat/completions",
            json=body,
            timeout=aiohttp.ClientTimeout(total=60),
        ) as resp:
            resp.raise_for_status()
            data = await resp.json()

        token_logprobs = data["choices"][0]["logprobs"]["content"]
        tokens = []
        for item in token_logprobs:
            candidates = [
                Token(t["token"], math.exp(t["logprob"])) for t in item["top_logprobs"]
            ]
            tokens.append(
                Token(
                    item["token"], math.exp(item["logprob"]), top_candidates=candidates
                )
            )
        return tokens

    async def generate_inputs_prob(
        self, text: str, history: Optional[List[str]] = None, **extra: Any
    ) -> List[Token]:
        raise NotImplementedError(
            "generate_inputs_prob is not implemented in HTTPClient"
        )