Spaces:
Running
Running
File size: 6,303 Bytes
acd7cf4 3a3b216 fb9c306 acd7cf4 e83bd85 acd7cf4 fb9c306 acd7cf4 d02622b 3a3b216 acd7cf4 fb9c306 acd7cf4 fb9c306 acd7cf4 fb9c306 d02622b 3a3b216 930dd4f 3a3b216 e83bd85 3a3b216 799ac7c e83bd85 3a3b216 930dd4f 3a3b216 e83bd85 3a3b216 799ac7c 3a3b216 e83bd85 3a3b216 acd7cf4 e83bd85 acd7cf4 3a3b216 acd7cf4 fb9c306 acd7cf4 fb9c306 acd7cf4 fb9c306 3a3b216 fb9c306 acd7cf4 d02622b acd7cf4 fb9c306 930dd4f acd7cf4 fb9c306 acd7cf4 fb9c306 3a3b216 fb9c306 acd7cf4 fb9c306 3a3b216 fb9c306 acd7cf4 fb9c306 930dd4f acd7cf4 fb9c306 3a3b216 fb9c306 3a3b216 fb9c306 3a3b216 acd7cf4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 |
import math
from typing import Any, Dict, List, Optional
import openai
from openai import APIConnectionError, APITimeoutError, AsyncOpenAI, AsyncAzureOpenAI, RateLimitError
from tenacity import (
retry,
retry_if_exception_type,
stop_after_attempt,
wait_exponential,
)
from graphgen.bases.base_llm_wrapper import BaseLLMWrapper
from graphgen.bases.datatypes import Token
from graphgen.models.llm.limitter import RPM, TPM
def get_top_response_tokens(response: openai.ChatCompletion) -> List[Token]:
token_logprobs = response.choices[0].logprobs.content
tokens = []
for token_prob in token_logprobs:
prob = math.exp(token_prob.logprob)
candidate_tokens = [
Token(t.token, math.exp(t.logprob)) for t in token_prob.top_logprobs
]
token = Token(token_prob.token, prob, top_candidates=candidate_tokens)
tokens.append(token)
return tokens
class OpenAIClient(BaseLLMWrapper):
def __init__(
self,
*,
model: str = "gpt-4o-mini",
api_key: Optional[str] = None,
base_url: Optional[str] = None,
api_version: Optional[str] = None,
json_mode: bool = False,
seed: Optional[int] = None,
topk_per_token: int = 5, # number of topk tokens to generate for each token
request_limit: bool = False,
rpm: Optional[RPM] = None,
tpm: Optional[TPM] = None,
backend: str = "openai_api",
**kwargs: Any,
):
super().__init__(**kwargs)
self.model = model
self.api_key = api_key
self.api_version = api_version # required for Azure OpenAI
self.base_url = base_url
self.json_mode = json_mode
self.seed = seed
self.topk_per_token = topk_per_token
self.token_usage: list = []
self.request_limit = request_limit
self.rpm = rpm or RPM()
self.tpm = tpm or TPM()
assert (
backend in ("openai_api", "azure_openai_api")
), f"Unsupported backend '{backend}'. Use 'openai_api' or 'azure_openai_api'."
self.backend = backend
self.__post_init__()
def __post_init__(self):
api_name = self.backend.replace("_", " ")
assert self.api_key is not None, f"Please provide api key to access {api_name}."
if self.backend == "openai_api":
self.client = AsyncOpenAI(
api_key=self.api_key or "dummy", base_url=self.base_url
)
elif self.backend == "azure_openai_api":
assert self.api_version is not None, f"Please provide api_version for {api_name}."
assert self.base_url is not None, f"Please provide base_url for {api_name}."
self.client = AsyncAzureOpenAI(
api_key=self.api_key,
azure_endpoint=self.base_url,
api_version=self.api_version,
azure_deployment=self.model,
)
else:
raise ValueError(f"Unsupported backend {self.backend}. Use 'openai_api' or 'azure_openai_api'.")
def _pre_generate(self, text: str, history: List[str]) -> Dict:
kwargs = {
"temperature": self.temperature,
"top_p": self.top_p,
"max_tokens": self.max_tokens,
}
if self.seed:
kwargs["seed"] = self.seed
if self.json_mode:
kwargs["response_format"] = {"type": "json_object"}
messages = []
if self.system_prompt:
messages.append({"role": "system", "content": self.system_prompt})
messages.append({"role": "user", "content": text})
if history:
assert len(history) % 2 == 0, "History should have even number of elements."
messages = history + messages
kwargs["messages"] = messages
return kwargs
@retry(
stop=stop_after_attempt(5),
wait=wait_exponential(multiplier=1, min=4, max=10),
retry=retry_if_exception_type(
(RateLimitError, APIConnectionError, APITimeoutError)
),
)
async def generate_topk_per_token(
self,
text: str,
history: Optional[List[str]] = None,
**extra: Any,
) -> List[Token]:
kwargs = self._pre_generate(text, history)
if self.topk_per_token > 0:
kwargs["logprobs"] = True
kwargs["top_logprobs"] = self.topk_per_token
# Limit max_tokens to 1 to avoid long completions
kwargs["max_tokens"] = 1
completion = await self.client.chat.completions.create( # pylint: disable=E1125
model=self.model, **kwargs
)
tokens = get_top_response_tokens(completion)
return tokens
@retry(
stop=stop_after_attempt(5),
wait=wait_exponential(multiplier=1, min=4, max=10),
retry=retry_if_exception_type(
(RateLimitError, APIConnectionError, APITimeoutError)
),
)
async def generate_answer(
self,
text: str,
history: Optional[List[str]] = None,
**extra: Any,
) -> str:
kwargs = self._pre_generate(text, history)
prompt_tokens = 0
for message in kwargs["messages"]:
prompt_tokens += len(self.tokenizer.encode(message["content"]))
estimated_tokens = prompt_tokens + kwargs["max_tokens"]
if self.request_limit:
await self.rpm.wait(silent=True)
await self.tpm.wait(estimated_tokens, silent=True)
completion = await self.client.chat.completions.create( # pylint: disable=E1125
model=self.model, **kwargs
)
if hasattr(completion, "usage"):
self.token_usage.append(
{
"prompt_tokens": completion.usage.prompt_tokens,
"completion_tokens": completion.usage.completion_tokens,
"total_tokens": completion.usage.total_tokens,
}
)
return self.filter_think_tags(completion.choices[0].message.content)
async def generate_inputs_prob(
self, text: str, history: Optional[List[str]] = None, **extra: Any
) -> List[Token]:
"""Generate probabilities for each token in the input."""
raise NotImplementedError
|